From 7cc92b65a3185aa242088d830e166e495674efc9 Mon Sep 17 00:00:00 2001 From: redpony Date: Tue, 22 Jun 2010 05:12:27 +0000 Subject: initial checkin git-svn-id: https://ws10smt.googlecode.com/svn/trunk@2 ec762483-ff6d-05da-a07a-a48fb63a330f --- decoder/ff.h | 152 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 152 insertions(+) create mode 100644 decoder/ff.h (limited to 'decoder/ff.h') diff --git a/decoder/ff.h b/decoder/ff.h new file mode 100644 index 00000000..630b3208 --- /dev/null +++ b/decoder/ff.h @@ -0,0 +1,152 @@ +#ifndef _FF_H_ +#define _FF_H_ + +#include + +#include "fdict.h" +#include "hg.h" + +class SentenceMetadata; +class FeatureFunction; // see definition below + +// if you want to develop a new feature, inherit from this class and +// override TraversalFeaturesImpl(...). If it's a feature that returns / +// depends on context, you may also need to implement +// FinalTraversalFeatures(...) +class FeatureFunction { + public: + FeatureFunction() : state_size_() {} + explicit FeatureFunction(int state_size) : state_size_(state_size) {} + virtual ~FeatureFunction(); + + // returns the number of bytes of context that this feature function will + // (maximally) use. By default, 0 ("stateless" models in Hiero/Joshua). + // NOTE: this value is fixed for the instance of your class, you cannot + // use different amounts of memory for different nodes in the forest. + inline int NumBytesContext() const { return state_size_; } + + // Compute the feature values and (if this applies) the estimates of the + // feature values when this edge is used incorporated into a larger context + inline void TraversalFeatures(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const std::vector& ant_contexts, + SparseVector* features, + SparseVector* estimated_features, + void* out_state) const { + TraversalFeaturesImpl(smeta, edge, ant_contexts, + features, estimated_features, out_state); + // TODO it's easy for careless feature function developers to overwrite + // the end of their state and clobber someone else's memory. These bugs + // will be horrendously painful to track down. There should be some + // optional strict mode that's enforced here that adds some kind of + // barrier between the blocks reserved for the residual contexts + } + + // if there's some state left when you transition to the goal state, score + // it here. For example, the language model computes the cost of adding + // and . + virtual void FinalTraversalFeatures(const void* residual_state, + SparseVector* final_features) const; + + protected: + // context is a pointer to a buffer of size NumBytesContext() that the + // feature function can write its state to. It's up to the feature function + // to determine how much space it needs and to determine how to encode its + // residual contextual information since it is OPAQUE to all clients outside + // of the particular FeatureFunction class. There is one exception: + // equality of the contents (i.e., memcmp) is required to determine whether + // two states can be combined. + virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const std::vector& ant_contexts, + SparseVector* features, + SparseVector* estimated_features, + void* context) const = 0; + + // !!! ONLY call this from subclass *CONSTRUCTORS* !!! + void SetStateSize(size_t state_size) { + state_size_ = state_size; + } + + private: + int state_size_; +}; + +// word penalty feature, for each word on the E side of a rule, +// add value_ +class WordPenalty : public FeatureFunction { + public: + WordPenalty(const std::string& param); + protected: + virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const std::vector& ant_contexts, + SparseVector* features, + SparseVector* estimated_features, + void* context) const; + private: + const int fid_; + const double value_; +}; + +class SourceWordPenalty : public FeatureFunction { + public: + SourceWordPenalty(const std::string& param); + protected: + virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const std::vector& ant_contexts, + SparseVector* features, + SparseVector* estimated_features, + void* context) const; + private: + const int fid_; + const double value_; +}; + +class ArityPenalty : public FeatureFunction { + public: + ArityPenalty(const std::string& param); + protected: + virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const std::vector& ant_contexts, + SparseVector* features, + SparseVector* estimated_features, + void* context) const; + private: + int fids_[10]; + const double value_; +}; + +// this class is a set of FeatureFunctions that can be used to score, rescore, +// etc. a (translation?) forest +class ModelSet { + public: + ModelSet() : state_size_(0) {} + + ModelSet(const std::vector& weights, + const std::vector& models); + + // sets edge->feature_values_ and edge->edge_prob_ + // NOTE: edge must not necessarily be in hg.edges_ but its TAIL nodes + // must be. + void AddFeaturesToEdge(const SentenceMetadata& smeta, + const Hypergraph& hg, + const std::vector& node_states, + Hypergraph::Edge* edge, + std::string* residual_context, + prob_t* combination_cost_estimate = NULL) const; + + void AddFinalFeatures(const std::string& residual_context, + Hypergraph::Edge* edge) const; + + bool empty() const { return models_.empty(); } + private: + std::vector models_; + std::vector weights_; + int state_size_; + std::vector model_state_pos_; +}; + +#endif -- cgit v1.2.3