From d4b52e01c1ad69ba69931be5af2300a4e63039a0 Mon Sep 17 00:00:00 2001 From: redpony Date: Wed, 11 Aug 2010 23:27:00 +0000 Subject: some writing git-svn-id: https://ws10smt.googlecode.com/svn/trunk@530 ec762483-ff6d-05da-a07a-a48fb63a330f --- report/biblio.bib | 18 + report/np_clustering.tex | 64 ++ report/pyp_clustering/np_plate.graffle | 1334 ++++++++++++++++++++++++++++++++ report/pyp_clustering/np_plate.pdf | Bin 0 -> 22188 bytes report/report.tex | 2 +- report/training.tex | 5 +- 6 files changed, 1421 insertions(+), 2 deletions(-) create mode 100644 report/np_clustering.tex create mode 100644 report/pyp_clustering/np_plate.graffle create mode 100644 report/pyp_clustering/np_plate.pdf diff --git a/report/biblio.bib b/report/biblio.bib index d02f295e..be8e8172 100644 --- a/report/biblio.bib +++ b/report/biblio.bib @@ -1,3 +1,21 @@ +@ARTICLE{neal:2000, + author = {Radford Neal}, + title = {Slice Sampling}, + journal = {Annals of Statistics}, + year = 2000, + volume =31, + pages = {705--767} +} + +@inproceedings{johnson:2009, + author = {Johnson, Mark and Goldwater, Sharon}, + title = {Improving nonparameteric Bayesian inference: experiments on unsupervised word segmentation with adaptor grammars}, + booktitle = {NAACL '09: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics}, + year = {2009}, + pages = {317--325}, + location = {Boulder, Colorado}, + } + @article{griffiths:2004, author = {Thomas L. Griffiths and Mark Steyvers}, journal = {Proceedings of the National Academy of Sciences}, diff --git a/report/np_clustering.tex b/report/np_clustering.tex new file mode 100644 index 00000000..0926a84e --- /dev/null +++ b/report/np_clustering.tex @@ -0,0 +1,64 @@ + +\newcommand{\p}{\textbf{p}} + +\chapter{Nonparametric Models} + +In this chapter we describe several closely related Bayesian nonparametric models for inducing categories in a synchronous context-free grammar. Our nonparametric models are variations on Latent Dirichlet Allocation (LDA) model of \cite{blei:2003}. Rather than modeling sentences (or sentence pairs), we assume that rule extraction heuristics determine the set of valid constituents and grammar rules, and so our task is only to determine the category labels. As discussed in the previous chapter, we make the critical assumption that each phrase (or pair), $\p$, can be clustered on the basis of the contexts it occurs in. We therefore define a generative model of a corpus that consists of collections of contexts (one context collection for each phrase pair type). + +\section{Model} + +The high-level structure of our model is as follows: each observed phrase (pair), $\p$, consists of a finite mixture of categories, $\theta_{\p}$. The list of contexts $C_{\p}$ is generated as follows. A category type $z_i$ is drawn from $\theta_{\p}$, and this generates the observed context, $\textbf{c}_i$, according to a category-specific distribution over contexts types, $\phi_{z_i}$. Since we do not know the values of $\theta_{\p}$ and $\phi_z$, we place priors on the distributions, to reflect our prior beliefs about the shape these distributions should have and infer their values from the data we can observe. Specifically, our {\emph a priori} expectation is that both parameters will be relatively peaked, since each phrase, $\p$, should relatively unambiguous belong to particular category, and each category to generate a relatively small number of context strings, $\textbf{c}$. + +To encode these prior beliefs, we make use of Pitman-Yor processes \citep{pitman:1997}, which can capture these intuitions and which have already been demonstrated to be particularly effective models for language \citep{teh:2006,goldwater:2006}. + +Our models assume a fixed number of categories, $K$. The category type, $z \in \{ 1 , 2 , \ldots , K \}$, is generated from a PYP with a uniform base distribution: +\begin{align*} +z &| \p & \sim \theta_{\p} \\ +\theta_p &| a_{\p},b_{\p},K & \sim \textrm{PYP}(a_{\p},b_{\p},\textrm{Uniform}(K)) +\end{align*} +\noindent Alternatively, we used hierarchical PYP process which shares statistics about the use of categories across phrases: +\begin{align*} +z &| \p & \sim \theta_{\p} \\ +\theta_{\p} &| a_{\p},b_{\p} & \sim \textrm{PYP}(a_{\p},b_{\p},\theta_0) \\ +\theta_0 &| a_0,b_0,K & \sim \textrm{PYP}(a_0,b_0,\textrm{Uniform}(K)) +\end{align*} + +\noindent Each category $z$ token then generates the context $\textbf{c}_i$. We again model this using a PYP, which will tend to cluster commonly used contexts across phrases into a single category. Additionally, by using hierarchical PYPs, we can smooth highly specific contexts by backing off to less specific contexts (e.g., composed of fewer words or word classes). + +The most basic version of our model uses a uniform prior base distribution over contexts: + +\begin{align*} +\textbf{c} |& z & \sim \phi_z \\ +\phi_z |& a_z,b_z & \sim \textrm{PYP}(a_z,b_z,\textrm{Uniform}(|V|^2)) +\end{align*} + +\noindent TODO. For contexts with more than a single word on either side, we typically backed off from a + +\begin{align*} +\textbf{c} |& z & \sim \phi_z \\ +\phi_z |& a_z,b_z, \phi_0 & \sim \textrm{PYP}(a_z,b_z,\phi_0(\cdot|z) \times \textrm{Uniform}(|V|^2)) \\ +\phi_0 |& a_0,b_0 & \sim \textrm{PYP}(a_z,b_z,\phi_0(\cdot|z)) +\end{align*} + +\noindent Figure~\ref{fig:np_plate} shows a plate diagram for the model. + +\begin{figure} +\begin{center} +\includegraphics[scale=0.75]{pyp_clustering/np_plate.pdf} +\vspace{-0.3cm} +\end{center} +\caption{Plate diagram for the nonparametric clustering model (hyperparameters omitted). Dashed circles indicate variables that may not be present in every model.} +\label{fig:np_plate} +\end{figure} + +\subsection{Inference} + +Inference in this model was performed using Gibbs sampling \citep{geman:1984}, with the continuous parameters ($\theta_{\p}$, $\phi_z$, etc.) integrated out. For the experiments reported below, we sampled for 1000 iterations, initializing by assigning every context in a phrase entirely to a random category. New values for the PYP hyperparameters were resampled using slice sampling every 10 samples \citep{neal:2000,johnson:2009}. The final sample was used to estimate $p(z|\textbf{c},\p)$, and each phrase occurrence was labelled with the $z$ that maximized this probability (TODO check this). + +\section{Experiments} + +\subsection{Number of categories} + +\subsection{Context types} + + diff --git a/report/pyp_clustering/np_plate.graffle b/report/pyp_clustering/np_plate.graffle new file mode 100644 index 00000000..80a6513c --- /dev/null +++ b/report/pyp_clustering/np_plate.graffle @@ -0,0 +1,1334 @@ + + + + + ActiveLayerIndex + 0 + ApplicationVersion + + com.omnigroup.OmniGraffle + 138.17.0.133677 + + AutoAdjust + + BackgroundGraphic + + Bounds + {{0, 0}, {576, 733}} + Class + SolidGraphic + ID + 2 + Style + + shadow + + Draws + NO + + stroke + + Draws + NO + + + + CanvasOrigin + {0, 0} + ColumnAlign + 1 + ColumnSpacing + 36 + CreationDate + 2010-08-11 18:21:53 -0400 + Creator + Christopher Dyer + DisplayScale + 1 0/72 in = 1 0/72 in + GraphDocumentVersion + 6 + GraphicsList + + + Class + LineGraphic + Head + + ID + 18 + + ID + 21 + Points + + {223.5, 46.5} + {262.5, 46.5} + + Style + + stroke + + HeadArrow + FilledArrow + LineType + 1 + TailArrow + 0 + + + Tail + + ID + 20 + + + + Bounds + {{187, 28.5}, {36, 36}} + Class + ShapedGraphic + ID + 20 + Shape + Circle + Style + + shadow + + Draws + NO + + stroke + + Pattern + 1 + + + Text + + Text + {\rtf1\ansi\ansicpg1252\cocoartf949\cocoasubrtf540 +{\fonttbl\f0\froman\fcharset0 Times-Roman;} +{\colortbl;\red255\green255\blue255;} +\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\qc\pardirnatural + +\f0\fs30 \cf0 \uc0\u966 +\fs22 \sub 0} + + + + Class + LineGraphic + Head + + ID + 10 + + ID + 19 + Points + + {281, 65} + {281, 136.25} + + Style + + stroke + + HeadArrow + FilledArrow + LineType + 1 + TailArrow + 0 + + + Tail + + ID + 18 + + + + Bounds + {{263, 28.5}, {36, 36}} + Class + ShapedGraphic + ID + 18 + Shape + Circle + Style + + shadow + + Draws + NO + + + Text + + Text + {\rtf1\ansi\ansicpg1252\cocoartf949\cocoasubrtf540 +{\fonttbl\f0\froman\fcharset0 Times-Roman;} +{\colortbl;\red255\green255\blue255;} +\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\qc\pardirnatural + +\f0\fs30 \cf0 \uc0\u966 } + + + + Class + LineGraphic + Head + + ID + 14 + + ID + 17 + Points + + {75.5, 154.75} + {114.5, 154.75} + + Style + + stroke + + HeadArrow + FilledArrow + LineType + 1 + TailArrow + 0 + + + Tail + + ID + 16 + + + + Bounds + {{39, 136.75}, {36, 36}} + Class + ShapedGraphic + ID + 16 + Shape + Circle + Style + + shadow + + Draws + NO + + stroke + + Pattern + 1 + + + Text + + Text + {\rtf1\ansi\ansicpg1252\cocoartf949\cocoasubrtf540 +{\fonttbl\f0\froman\fcharset0 Times-Roman;} +{\colortbl;\red255\green255\blue255;} +\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\qc\pardirnatural + +\f0\fs30 \cf0 \uc0\u952 +\fs22 \sub 0} + + + + Class + LineGraphic + Head + + ID + 11 + + ID + 15 + Points + + {151.5, 154.75} + {186.5, 154.75} + + Style + + stroke + + HeadArrow + FilledArrow + LineType + 1 + TailArrow + 0 + + + Tail + + ID + 14 + + + + Bounds + {{115, 136.75}, {36, 36}} + Class + ShapedGraphic + ID + 14 + Shape + Circle + Style + + shadow + + Draws + NO + + + Text + + Text + {\rtf1\ansi\ansicpg1252\cocoartf949\cocoasubrtf540 +{\fonttbl\f0\froman\fcharset0 Times-Roman;} +{\colortbl;\red255\green255\blue255;} +\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\qc\pardirnatural + +\f0\fs30 \cf0 \uc0\u952 } + + + + Class + LineGraphic + Head + + ID + 10 + + ID + 13 + Points + + {223.5, 154.75} + {262.5, 154.75} + + Style + + stroke + + HeadArrow + FilledArrow + LineType + 1 + TailArrow + 0 + + + Tail + + ID + 11 + + + + Bounds + {{187, 136.75}, {36, 36}} + Class + ShapedGraphic + ID + 11 + Shape + Circle + Style + + shadow + + Draws + NO + + + Text + + Text + {\rtf1\ansi\ansicpg1252\cocoartf949\cocoasubrtf540 +{\fonttbl\f0\froman\fcharset0 Times-Roman;} +{\colortbl;\red255\green255\blue255;} +\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\qc\pardirnatural + +\f0\fs30 \cf0 Z} + + + + Bounds + {{263, 136.75}, {36, 36}} + Class + ShapedGraphic + ID + 10 + Shape + Circle + Style + + fill + + Color + + b + 0.668478 + g + 0.668478 + r + 0.668478 + + + shadow + + Draws + NO + + + Text + + Text + {\rtf1\ansi\ansicpg1252\cocoartf949\cocoasubrtf540 +{\fonttbl\f0\froman\fcharset0 Times-Roman;} +{\colortbl;\red255\green255\blue255;} +\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\qc\pardirnatural + +\f0\fs30 \cf0 C} + + + + Bounds + {{315.5, 164}, {22, 23}} + Class + ShapedGraphic + FitText + YES + Flow + Resize + FontInfo + + Font + TimesNewRomanPSMT + Size + 20 + + ID + 9 + Shape + Rectangle + Style + + fill + + Draws + NO + + shadow + + Draws + NO + + stroke + + Draws + NO + + + Text + + Pad + 0 + Text + {\rtf1\ansi\ansicpg1252\cocoartf949\cocoasubrtf540 +{\fonttbl\f0\froman\fcharset0 TimesNewRomanPSMT;} +{\colortbl;\red255\green255\blue255;} +\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\qc\pardirnatural + +\f0\fs40 \cf0 |C|} + VerticalPad + 0 + + Wrap + NO + + + Bounds + {{171, 122}, {165.5, 65.5}} + Class + ShapedGraphic + ID + 8 + Shape + Rectangle + Style + + shadow + + Draws + NO + + + + + Bounds + {{305.5, 53}, {15, 23}} + Class + ShapedGraphic + FitText + YES + Flow + Resize + FontInfo + + Font + TimesNewRomanPSMT + Size + 20 + + ID + 6 + Shape + Rectangle + Style + + fill + + Draws + NO + + shadow + + Draws + NO + + stroke + + Draws + NO + + + Text + + Pad + 0 + Text + {\rtf1\ansi\ansicpg1252\cocoartf949\cocoasubrtf540 +{\fonttbl\f0\froman\fcharset0 TimesNewRomanPSMT;} +{\colortbl;\red255\green255\blue255;} +\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\qc\pardirnatural + +\f0\fs40 \cf0 K} + VerticalPad + 0 + + Wrap + NO + + + Bounds + {{241.5, 18}, {79, 57}} + Class + ShapedGraphic + ID + 5 + Shape + Rectangle + Style + + shadow + + Draws + NO + + + + + Bounds + {{340.5, 189.75}, {20, 23}} + Class + ShapedGraphic + FitText + YES + Flow + Resize + FontInfo + + Font + TimesNewRomanPSMT + Size + 20 + + ID + 4 + Shape + Rectangle + Style + + fill + + Draws + NO + + shadow + + Draws + NO + + stroke + + Draws + NO + + + Text + + Pad + 0 + Text + {\rtf1\ansi\ansicpg1252\cocoartf949\cocoasubrtf540 +{\fonttbl\f0\froman\fcharset0 TimesNewRomanPSMT;} +{\colortbl;\red255\green255\blue255;} +\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\qc\pardirnatural + +\f0\fs40 \cf0 |P|} + VerticalPad + 0 + + Wrap + NO + + + Bounds + {{98, 96.75}, {262.5, 116}} + Class + ShapedGraphic + ID + 3 + Shape + Rectangle + Style + + shadow + + Draws + NO + + + + + GridInfo + + GuidesLocked + NO + GuidesVisible + YES + HPages + 1 + ImageCounter + 1 + KeepToScale + + Layers + + + Lock + NO + Name + Layer 1 + Print + YES + View + YES + + + LayoutInfo + + Animate + NO + circoMinDist + 18 + circoSeparation + 0.0 + layoutEngine + dot + neatoSeparation + 0.0 + twopiSeparation + 0.0 + + LinksVisible + NO + MagnetsVisible + NO + MasterSheets + + ModificationDate + 2010-08-11 18:37:26 -0400 + Modifier + Christopher Dyer + NotesVisible + NO + Orientation + 2 + OriginVisible + NO + PageBreaks + YES + PrintInfo + + NSBottomMargin + + float + 41 + + NSLeftMargin + + float + 18 + + NSPaperSize + + size + {612, 792} + + NSRightMargin + + float + 18 + + NSTopMargin + + float + 18 + + + PrintOnePage + + QuickLookPreview + + JVBERi0xLjMKJcTl8uXrp/Og0MTGCjUgMCBvYmoKPDwgL0xlbmd0aCA2IDAgUiAvRmls + dGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeAGVWE2P3DYMvetXsD21h1UsWR/2tYv2 + kF4aZIECDXqadlEssgXSXPPj+2iJpMaecdMd7Ie5IvVI8YmkP9E7+kQTPrkWqvNM//xJ + v9Lf9Obxc6DLZwrb5/OFHiafp+2L7C9Tcs+0LpTj5GOmWKLPFEJha8+w8BbfL83m4/tt + u4neP2LnsD088C/e/PLKVtbi62DEwch74ASkyJAmApxBdc4ARHkOrAULPzxRZI8mesDv + h9XnktNMxWf39Epvfgp+wr5Pz/Tdl1++fE9PL/TjUzN/7XFMAXZLXqiuCE/zZdh3g+yw + YVsYhnWncAOwlAWmj1irjzGU5RbWn0+Qhhoop8wxL/xz+7GF/hZcXh1i3K09hRwRPMq5 + 3gQdJl/qvNyO8OONCGN9WVKFxq2/cLhxnX2NdXV5nfxaEf5XmqcJ51sT5WX2a1ryIKlI + txyQMl2PcOI+I5QEW0vxZV2yy3nxaY2FYs1+nrDcJDiOWLF81CvBx4TlWa13iVMEUfUE + J/ZT6+vipwmABQFllRz8u4Am+7Pi/FCPQop+Yo+GSIS0+on9lti4UCafODamV6pPHEGL + BIWawGVGJlhN0j2CJdOTSJh1lQgCjYTitEi4MCe/bpHvZ0EmkRMb9M4yMS44pIrTykw8 + MB3eb0zH74eMeMeUsII2oiNineiPJ+SJoR6SLca0SzaTaDp0vaukYS5cJVtY112yhTUe + ki0seZdsIrFkMz1LNrOuqdURDMl28O9usolHehhIQImEJptIhmRTvSFpBIemlmIdJC0S + Y7KJ37ideiqbRJJNI6E4LyTWh2RTBJp+ilPIdDktLHHCHXEv2UChJcQVlWGfbL9Zst2g + tItx5os6c4aBzTFHX+Txo+DZKlErYnwfIhZ8EXHeqwq2Zxp87BYyuIz/fqS/9sufwZC3 + +H65fcNsthscZ3C2Yiq2A25+gDXbip65imqCD2AGlCC+tpF77dqGvQD3rq9tkwiTTM+u + 7TAvG5P0knYh1j2TuNvYXdshzHsmqaQXDlgSvYFJal2YZAhUcvCPmSTdzY2ztohopg4R + UUZJRIxRGpHhGlY8xh/BPEiaZ1eMEv+NUSpRRklEFCdOs1s3RhkCYZTh/DpGBfR4J4xC + ZxLQqXVGzZ7zivu0b84ZFTI3apqToaLiy+MdRoUljYxqKsqo/miM2i0/Z1RbrIwSOJ1R + 8qiMGpeD3FeMKutGKFQ0YxS8A6FmNNvSCJlEGGV6xij05ChNqRqjEDbugxBwaY1SYkJN + YLDpzWhK0QdFHFxvs0wijDI9Y5RZF/4YApUc/BsZ9YESPr/j6vrj5tWlXmrWvpLGQtjl + TCIVxfSsXik25ZLiF4lTLwdWaiyUXSYRdpleZ4m7kFkXLhkClUh01L9jvXLDtYMZpdeI + Y29U/Bo3cs2tXB3J5XgS1HnsYEv+A0761Ewt+8o3dZ7C1If7xwZa8SQJQ1IDw8Rs7I9X + jHVaA0PgOqk1sKk0xqIw9ceBsdfLwVh3vwY22wc4wtiOzhjLtp0uv2KsNt4FjV/kYjg0 + 7AWtX0B7qA07lWXyCzjoTK9i9uGiNjTspYDzPItow24SGUEwgm16yK0o7blYHySCQBt2 + xWkNO9WpoJeoyenoIhIbLAa98xoonrl5A4jLZYhIau4Hiwj6BYQorbZTboEcI+IQEACc + sQpHvg1zJpGIjHoSEbPeJU4RaEQU5xARDMB8AMGGOZPIMDfo/dcIUzAIyfx/e4JpryqM + pd+elkDACpj6uTfEHwHYZm7XOozgtrcmTCVuJnmEwgXclycqOG08oNmrePMgD2gjx4W9 + 5Lk7TSTvimsLuzKEZBDYpuJpNttC9IbXxJHmXBMLlmT4UOKYpBOHdHwTAjBxpPVXmsh4 + gDcvnUo6RAx6Mmo4JY5ISBGYnhDchg8ljiJwRpyDf/+n1KmXmmRDdCyFJV6W5rLrSIYe + HSPREJ1OK/Vy0NNYqHWRGIlUT3EO0THKyPkMkj6ED3qnJMJodo9EfE9vrwHmryMRj3lX + tqzUYT5tppZmyt4oSKnD/HNS6tqsl5jsOC/ErRA/YGgTarYXmkLNbRZrWGR9WfACk8m5 + aRd0XOMgtq0Flc470jY/XsNodjqmtkWfHF1fyBDf/QsA9XTZCmVuZHN0cmVhbQplbmRv + YmoKNiAwIG9iagoxNTkwCmVuZG9iagozIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJl + bnQgNCAwIFIgL1Jlc291cmNlcyA3IDAgUiAvQ29udGVudHMgNSAwIFIgL01lZGlhQm94 + IFswIDAgNTc2IDczM10KPj4KZW5kb2JqCjcgMCBvYmoKPDwgL1Byb2NTZXQgWyAvUERG + IC9UZXh0IF0gL0NvbG9yU3BhY2UgPDwgL0NzMiA5IDAgUiAvQ3MxIDggMCBSID4+IC9G + b250IDw8Ci9GMS4wIDEwIDAgUiAvRjMuMSAxMyAwIFIgL0YyLjAgMTEgMCBSID4+ID4+ + CmVuZG9iagoxNCAwIG9iago8PCAvTGVuZ3RoIDE1IDAgUiAvTiAxIC9BbHRlcm5hdGUg + L0RldmljZUdyYXkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCngBhVJPSBRR + HP7NNhKEiEGFeIh3CgmVKaysoNp2dVmVbVuV0qIYZ9+6o7Mz05vZNcWTBF2iPHUPomN0 + 7NChm5eiwKxL1yCpIAg8dej7zezqKIRveTvf+/39ft97RG2dpu87KUFUc0OVK6Wnbk5N + i4MfKUUd1E5YphX46WJxjLHruZK/u9fWZ9LYst7HtXb79j21lWVgIeottrcQ+iGRZgAf + mZ8oZYCzwB2Wr9g+ATxYDqwa8COiAw+auTDT0Zx0pbItkVPmoigqr2I7Sa77+bnGvou1 + iYP+XI9m1o69s+qq0UzUtPdEobwPrkQZz19U9mw1FKcN45xIQxop8q7V3ytMxxGRKxBK + BlI1ZLmfak6ddeB1GLtdupPj+PYQpT7JYKiJtemymR2FfQB2KsvsEPAF6PGyYg/ngXth + /1tRw5PAJ2E/ZId51q0f9heuU+B7hD014M4UrsXx2oofXi0BQ/dUI2iMc03E09c5c6SI + 7zHUGZj3RjmmCzF3lqoTN4A7YR9ZqmYKsV37ruol7nsCd9PjO9GbOQtcoBxJcrEV2RTQ + PAlYFH2LsEkOPD7OHlXgd6iYwBy5idzNKPce1REbZ6NSgVZ6jVfGT+O58cX4ZWwYz4B+ + rHbXe3z/6eMVdde2Pjz5jXrcOa69nRtVYVZxZQvd/8cyhI/ZJzmmwdOhWVhr2HbkD5rM + TLAMKMR/BT6X+pITVdzV7u24RRLMUD4sbCW6S1RuKdTqPYNKrBwr2AB2cJLELFocuFNr + ujl4d9giem35TVey64b++vZ6+9ryHm3KqCkoE82zRGaUsVuj5N142/1mkRGfODq+572K + Wsn+SUUQP4U5WiryFFX0VlDWxG9nDn4btn5cP6Xn9UH9PAk9rZ/Rr+ijEb4MdEnPwnNR + H6NJ8LBpIeISoIqDM9ROVGONA+Ip8fK0W2SR/Q9AGf1mCmVuZHN0cmVhbQplbmRvYmoK + MTUgMCBvYmoKNzA0CmVuZG9iago5IDAgb2JqClsgL0lDQ0Jhc2VkIDE0IDAgUiBdCmVu + ZG9iagoxNiAwIG9iago8PCAvTGVuZ3RoIDE3IDAgUiAvTiAzIC9BbHRlcm5hdGUgL0Rl + dmljZVJHQiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeAGFlE1IFGEYx/+z + jQSxBtGXCMXQwSRUJgtSAtP1K1O2ZdVMCWKdfXedHGenmd0tRSKE6Jh1jC5WRIeITuGh + Q6c6RASZdYmgo0UQBV4itv87k7tjVL4wM795nv/7fL3DAFWPUo5jRTRgys67yd6Ydnp0 + TNv8GlWoRhRcKcNzOhKJAZ+plc/1a/UtFGlZapSx1vs2fKt2mRBQNCp3ZAM+LHk84OOS + L+SdPDVnJBsTqTTZITe4Q8lO8i3y1myIx0OcFp4BVLVTkzMcl3EiO8gtRSMrYz4g63ba + tMnvpT3tGVPUsN/INzkL2rjy/UDbHmDTi4ptzAMe3AN211Vs9TXAzhFg8VDF9j3pz0fZ + 9crLHGr2wynRGGv6UCp9rwM23wB+Xi+VftwulX7eYQ7W8dQyCm7R17Iw5SUQ1BvsZvzk + Gv2Lg558VQuwwDmObAH6rwA3PwL7HwLbHwOJamCoFZHLbDe48uIi5wJ05pxp18xO5LVm + XT+idfBohdZnG00NWsqyNN/laa7whFsU6SZMWQXO2V/beI8Ke3iQT/YXuSS87t+szKVT + XZwlmtjWp7To6iY3kO9nzJ4+cj2v9xm3Zzhg5YCZ7xsKOHLKtuI8F6mJ1Njj8ZNkxldU + Jx+T85A85xUHZUzffi51IkGupT05meuXml3c2z4zMcQzkqxYMxOd8d/8xi0kZd591Nx1 + LP+bZ22RZxiFBQETNu82NCTRixga4cBFDhl6TCpMWqVf0GrCw+RflRYS5V0WFb1Y4Z4V + f895FLhbxj+FWBxzDeUImv5O/6Iv6wv6Xf3zfG2hvuKZc8+axqtrXxlXZpbVyLhBjTK+ + rCmIb7DaDnotZGmd4hX05JX1jeHqMvZ8bdmjyRzianw11KUIZWrEOOPJrmX3RbLFN+Hn + W8v2r+lR+3z2SU0l17K6eGYp+nw2XA1r/7OrYNKyq/DkjZAuPGuh7lUPqn1qi9oKTT2m + tqttahffjqoD5R3DnJWJC6zbZfUp9mBjmt7KSVdmi+Dfwi+G/6VeYQvXNDT5D024uYxp + Cd8R3DZwh5T/w1+zAw3eCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKNzkyCmVuZG9i + ago4IDAgb2JqClsgL0lDQ0Jhc2VkIDE2IDAgUiBdCmVuZG9iago0IDAgb2JqCjw8IC9U + eXBlIC9QYWdlcyAvTWVkaWFCb3ggWzAgMCA2MTIgNzkyXSAvQ291bnQgMSAvS2lkcyBb + IDMgMCBSIF0gPj4KZW5kb2JqCjE4IDAgb2JqCjw8IC9UeXBlIC9DYXRhbG9nIC9PdXRs + aW5lcyAyIDAgUiAvUGFnZXMgNCAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0xhc3Qg + MTkgMCBSIC9GaXJzdCAyMCAwIFIgPj4KZW5kb2JqCjIwIDAgb2JqCjw8IC9Db3VudCAw + IC9EZXN0IFsgMyAwIFIgL1hZWiAwIDczMyAwIF0gL1RpdGxlIChDYW52YXMgMSkgPj4K + ZW5kb2JqCjE5IDAgb2JqCjw8IC9Db3VudCAwIC9EZXN0IFsgMyAwIFIgL1hZWiAwIDcz + MyAwIF0gL1RpdGxlIChDYW52YXMgMSkgPj4KZW5kb2JqCjIxIDAgb2JqCjw8IC9MZW5n + dGggMjIgMCBSIC9MZW5ndGgxIDk5ODAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3Ry + ZWFtCngBrXoJfFRF1u+pqnu7O0svCVmadMjt7pvOQneSJglLQks6S0cgLAECpBkxCRA2 + QQIhKAoCnwsYVPgUUZwRcByUb0DpdAQbcCTjG51RxwHHfRnBb9TRUWaQQZ+OkH7/exNR + 5je/937v915Xzjl1ltpOnapbt26IEVEybSRBwfnL2zpoPL0Kye8B3fPXrHb2+z84R8Sa + iYzvLuxYtHzzR48biBLKieSeRcvWLnyt9Po4keVT6N9e3N62oH/st2VEGX0oP2oxBKl/ + TxgO/hvwuYuXr74xcz5vIMrMBp+2bMX8NulJwwfg/eCTl7fd2GG4xvAE+AB45/Vty9tt + UwomgL8G/PCOFZ2r45voS/BbwPs6VrV3VHzyOzP4p4isIcgYkvZLJgPdAlpLlYMSXawj + fjkrLuf+/2YkeOcewCRSANliBzmI4h8CPgJ82j8xflG+jtT+pfEzYgiaxoh1IPLQTtpD + uXSOjaDnqI8m0mNUTY20g66mk3SILLSWvUwSqVRH+8nDFOJUT5lMpl30Dl1Dq+hjOkMF + 1EAfsFTUE6IOyqCK+GfADbQlfhRWifDKk3SMLWMzqAT58dzHvGh5W7yPMqkg/kr8bXAP + 08csN96DeHiYPqEUyqcN9J+USkvppfhF9DeX5tHjbB37jFzUSlulcqk7fh2NpcP0BmtA + bjKtld9OOEzLUOpRlsn64qfjf6FnJUbtqOk/aAt6HKU+Xixq5b3kpDy6iqZQG7Q30zts + CBshgvH8eE18F6SP03nu5S8II/rhpQnUQnfTI/DGm/QRfcWS2Ej2MDuA9Cr7m/w2+tZA + XXQTYvpheO9xOkhH2Qg2gmfyTHgrkwppJnTbaB/a76VTrIGFWR/7tdgn+/ur4mnx9Phf + 4nEaTs3o4R76Ndq4wPywQQvCLVZLOdJqufTSJoxwAf2MTmG9vEkfwO9f0TdsONKH/Ba+ + IT47vj/+MfpiIoXG0DSaQytoDd1AP8esPke/oS/ZdzwBliel5+Wb5HPxe+HbPKpB36fC + egbq3opZilIM6U2MMoU5MYoxbAqbzhaxbWwni7F32DvcwF18Jf+riIiXxfvSKFmOV6Km + DMpBuyrNpsWYgVvg7Xsx3v30PL3I0lkeK8KI3kT5r/lYXof0KD/JPxC3i23SRfmO/jP9 + n/d/F+8mI6Lsavihi34JL/ydZaAPhWwp62R/Rs+386eERdiEKkaKatEkwmKL2CF+J/4g + rZIOSO/KE+Q2+YCxrf/6/lfjDfHb4AuGVZmDSPJROY1G/CxENF2H/nUgraJ1tIm66R7E + y720lw5g3CfoRXqD/kRfYAaIudDnJWh9OaLudnYP0i52kP2aPc9eZB+yr7XE3UgFfBSv + 4rW8ni/ityPt4Kf4m/xTkS3miw1iI9JucUS8I5EkSXG5FGm8vFV+3PCyscA43jjP9PuL + Zy8NvxS+9EE/9Wf1/6R/Z/+v+/8SnxVfi/57qIiK0dPN6OUuxOA+pF8iEo/QC9gz39L7 + ep5xJiPi7UxFNPgwa1XsajYBaTKbhjQTaTabg9TG5rHFSBvYRvYf7FZ2G7ub3a+nBzG2 + fey/2BGkp9kxpDfYafYJ+ys7zxHEXCCaPTyfl/AKjLSWX82n8ulIi/gKpA6+iq/BDD3O + e/lR/qYYIjyiSLSJlWKXeFI8J14X30pc8kklUkCaJS2SbpVOSq9Kb0vfyYockhfLu+Xn + DA5DuWGmYanhQcMhw6eGi0aDsdE4z7jO+LoxbvJgt/otxn0Yc/rDr8RwknXKadKN/DTW + hV10yJvZTHjMwJvEMnGP+KO8kJ0TTvYu6xZLxHXxR0U9/0asYLP4CeYWilwpFtJdFGcH + +If8Av+LlM6a+GesQPpP9jRfIWo5njvYU1+T0qVbZTxv+FtUydezPv68uFXcGv8VVcq7 + 2Wl5N3+VnNIZPoROY1Vv5g+g0B/4Er6VmqVy+TtaAr//l3wj/D2Ob2HDxevSbvpYqPwf + 7BzbiV3jFTZRyuXX8gp2ADvuJZZDZ9lK6mD3U5AdZ39iMWJsv3icTeLJmK0IN7PReOS8 + IlzsdZFIYa2PLI+ns0Z+js8UzxhOiZGMYZf4I93EBPMjdr7/9dP1WAE7eD72tBB2k9dY + KdnpAez3F/qf0XZs+W15K+LsEeGj6eSnufxlPM3uxU7zMdbkHVRKxxCDW8jPH6R18Y1s + Afb9ydg/OcXYUiphSdgtM9G3DXheZHA39sIWNP0N9v+XsOs3sL/RDcyJldVHBZKmuUsK + YWdqxf67FWkBzQX3M7rXcFh+jaayTCLJ2b8bUf4+XYtnzp/RfhYF0L859IjkQ6+d2JlX + osTP+sdTEOkOeplxWo8+j8M6b5TGY+fdGV+KES7BM2oSnokv0pL4A1SLuZsevzW+lVri + j8SvoUU0I74f+++aeJRG0WY5zGfJXqkce+yL7Dd4Hr3HtmLfHk/vYj/yMDv9FelJ9H+c + fJy6pbewd1bF74q/Qenwhxsemoen6Ee0nP4Gv40XfVTWP4X3xOtFB55Qp2la/PG4whJp + cXwZdt5naJ9Rxt6zkXLkfYjdrdJC7kd/CymDlUB6jbyHKFgzsylYNe6qwNjKijGjR40s + Lysd4S8pLvJ5hxcW5Od5clW3y6nkDMt2ZA21Z2akDUlNsVkt5uSkxAST0SBLgjPyhdT6 + VmckrzUi5anjxxdpvNoGQduPBK0RJ0T1V9pEnFq5NqiusAzCcuG/WAYHLIOXLZnNGaBA + kc8ZUp2RV+pUZ4zNmdaM/N11atgZOavnJ+v57XrejLzLhQLOkH1xnTPCWp2hSP2axd2h + 1roiH+tJSqxVa9sTi3zUk5iEbBJykUy1o4dljmN6hmeGKns4mcwYYiRLrQtFhqooimqE + J9S2INI4rTlU53C5wkW+CKudr86LkFoTsXp1E6rVm4kYaiNGvRnnkghGQ1udPb6+7rti + NprX6k1eoC5ou6Y5ItpQRyiS4kW7dZHMmz6y/8Ci8tTa5s0/1jpEd8i+xKkZd3dvdkb2 + Tmv+UVmHS6shHEYdEe6pb+2uR8N3YZ4aZjjRFr893Bxht6NBpzYObUwDo2tXQ5qkdakz + kqDWqIu7l7ZiYrK6IzR9rSualRU8Gj9DWSFnd1Oz6opUOdRwW112Txp1T1/bOzToHHql + psjXY0sZcGuPxTqYSTb/ONMOlw/o9JxuruUapl/2K9N6pE6IBBFP853oSbOKMY3RUPsY + HPPHwP34hRlKRRZgPpZEEmpbu22VkNswRBaRPTbV2f0VYf7Vs19cKWkblBg8tq9IU2pR + cjnQInjIDQZdxOuNDB+uBYixFjOKPo7T+ZFFvjUxHlE7bE4QuI8a4du2cGUJnO9yadO7 + NRakeWAiG6c1D/BOmueIUrDEG47wVk3T970mfaam2fi95nLxVhVx/JT+NpAeMeVd/rPa + MoaEFldGWMb/Rt0+oG+YoTZMm9PsDHW3DsZsQ9MV3IBecyj8Bt1gjg0UhMMjkidi8ExQ + EXrT5yCOPNqf7KlXQ0tax2OpoY+RIbXNwsFRgZbjDqFXhfi9Zs739WlMc7JWl+Qx6PG/ + IGY0IYB1CXPWR2yt4wdwONHlGlxe/6dCsfg5rZROfig2OOZIpXdwVANjjIy9gr+ie8nd + oqEJuxNvaJrT3Z14ha4e+153d73qrO9u7W6LxTfOU502tfuoaBbN3R0h7FgD0x+LH9vq + iNTfFcZQFrNKBDmnmh6VbZnWE2RbZsxpPmojcm5pao5yxmtba8Kav3htU/Ngf3XPo8fa + TODhQJxl4/SQLRPedI00uYez4/xZnEeN/ESUZCnGn31KUKJRyxxmNNRkkE9Az0mwQkpg + 17Frye61fR24FJhiuxCYfClAVcjbLgKN8LtSXCkeIJYt0UWn6LsYlOk7nEL60C6jifEP + ZSve93IZD9Yk5JSwEl4iSpSd1l05j1ofTT1ifTo1yZTDMjLZenFz+o0Zd4vujIfFzqyD + 4rhISBYWiQ8bj8O1XGKypeQ68HCXD3MHY8coJhqOOB+SC7IFi/HTh7Hx2ZgtJqoPbzPv + MXNzTJQES9IS+EGcWFip7eChFKakVKXwlKxgHstLCDjtzGpX7NyebDbzmfYJngXz7V6M + zjt31eSzU2xzv161cvLZCyvPUtWllRfmXvik6uwXF84y29kLZ20vjvDXrg060x2GZKMn + Ky8pL8NjcCQUUXI6kGmoXMQSM81wu9fLvPpv0ya2ci6tWjmXDVHz8lS3gaenpWaUlY4a + nWmQVGd+3sjy1Nyy0kyIRo8aLb2qKOM+eWTzu+vXnH3wtpfWKgv7zx3vP3S0+wir+tV9 + 24anOtKykuTr+stOHrmz//XTsf7z21fuTzu8/5/HLr7Mmo6Pzxji0C4U4Hs35vxtvIPX + 8kgwdrPlWQtfRmwDdfGbLWv8a0feNOpE4jGzaTmxVClUnLJg1Cg+k7fzjfzO4Ha+K9hr + fspyrOxY7Rvmt0rNqUlMWPC6JZdupc2lu+kg22t5tdSUBO8Sl5OVhBzzcLyRlyRUJUxN + uIteKH+HzpdbE5KGJvnZSF4WrAk2hh5jj/J9wSP8SGKk5hUcpE6x13E8/5w+x+Hzq8Rz + yefN9oyyjPLyUn95E9tFO8w7S+8vT+gxaHEddJVY3TmBnFBdOqX7ucVPIt+eMdRhN9hN + hXmO/LH5HDFpu/S8jlJSMytWspTUioqSSwFHsMJgNjoMOYrD7nKXKI4ClztQfZUjIEuS + Q7YqjkyXqiiOfJc6trzSMRZnRrfFnGaxmKuJYvzFYJO/PM3vLydmLq+WQ36qLpcqzYxr + Bxqj0dJhOWHhljyjZDRmZAw9aA+MHVtQkH9VZWVhYd7BfHtmpsEg53PZFLhPsvj9JdJG + mXXITI7xMcHkoLnRzDeaWcTMzDH+bdBXYjUMGcJnWpOtVg1rkWl1KznJNhufmaMLc7I0 + Yc7uutAzLIDLhzY2FEvTO+UCAg0LU8Nfz1256tLclQGblj6iqio9A98MSAbwAAMPzS2B + r/DHAJstxd71tt+A2DVqJxsivs/r1ckVTHiEn62au5JWrqptDiaUlBVVl9QU1Upzw3O9 + 2JuDiaPsGeaqRGdaRWksfuaIrSJos1SwWPzTqKWCIAEB1xe1aVxfD8jAQsF6CWtLBSuF + ZWRkprtGluKAmZfPUtIyM7A8yiDR1sjIlPL8vPw8VR3pSlfdRoMhPWXUaNIOowMyC8cb + G1/ALtz85OxLN1eWDRnZ7zMnOr3+4kvP+pvy7OZExef385riEp9iT+tiheMcw0sVdt43 + fvGkjMP8XL/15rDB48m32/PK2cn+hkWuoal2j2eE8yaxbJHbruUzbcEF/W1DljHbTwpy + MlWPh2VU1acdxbrj2rqTvFh3CvnYjUepON4XvK9yZElxl321Y3X2uoKO4vuzjWvtT+ce + K3jP8V72u7mGofm24oK8Ck9F/tgCf/Gc/CX5HcUbi5NeIJaVXZjdkP3W0Pcc8v4C9lLu + O5nv5r6T/3bB57mG7KA6rMBkURwml5spDqNLRTCnu1Qa5vQNH1ZQpU5Vuaoa04cXZGSk + c5PRlEpZtix/VjCrI0vOmlAM1wfHVY2kYhYsjhTzPcV9xaeKRbGP6UHI9HhjehAyt9Wi + B6FFF1r0ILTsLiqOsRt6XW3YOa+IwMk2hKD367mTa5uPUp4o+syhk7NhLFGsz7MIu5K5 + Z7E6Uysw7/pump1bmJlt9xTkFWbmlbHcbKD8ocPLmMehln2/kW7aRBOa1gZtOW6Xoo6V + 3DnOsYRXDWJagHvJq++yK1exVTSXzfXqMXNlxGjxUgpfpBlUd15+hrYDI2KwIRvZL7Lz + JpdfOl42y5PmyJ9cxr488sft7/1uxKrqkdOHLX5g/G1NZY385v6ujYrP4xmjrBbLtFxD + 9KbHTlmuTkx8ZGPzAw3aXSajR/rr6QLuPwXNCCaTvDTlulHb2XbOeYy9F0wQJGdmZsEu + JvKDZs6dwi+CQoihkvwMrjNdtBTbj+7NuYHJWLFTbKH2uk+oavLZEXgFZt4hKWrKhRny + Pd/EjOMH9nhs8Xxb8mtP3tFiDXxlGmrSpPS7LW9+dpm6++vxFMCNLCWgfwM/UKOrP0Sz + bfTd6n+exmHie82gAcmGCpYtz6KJ8m/JLXWSmz2EGx/CO+8/+RHxlPhCLyHTecT7wzhT + cLLhPnUWuvPf0uckg9fqTB2s14B3e5o1PRye0+BtWrK8vXNK+w3TVyxvu75xxuQmWGrW + +MVdePP+dz8cXHA/WExl1HKUmsQXvWK4UlWdLj6iVvEZ7REf02mARDZIbMhVATqQjwPk + eJ/4sDcUKg3GQL3FOo0WFJYe1RTRrOzSX4kPcU7IJwWC09EMh675IFpTM5gZNWYg0zu8 + qPR0daL4gP4O4OIDcRpv2Xqp3oLi0nPVZgiYuIWseCoqtFf8iSIATkHxbm9uXumeE+L3 + 0L8kXsQwtWIvRs0ppajwt+JpuErBxdzhQc3hXktKKVV3irvhwT7gU4AzgHMAiVaIx2kD + YBvgEEAiK7ACKAFM1STigDiAfu5DeStwCWAFYBtAggt/Cfl1Ghb7xVLsWIq4Czf16aBb + xX06/QVoFvifQ477VPEIeI3uGeR/CqrpHxqU7wKfAf7BQfoA5A7wO8Fr9P5Bfo3o0sut + HqR7RWc0R7FV50DvBPgBArkdyO2A63aAI2CGm65leg96QEtR4/IBCkeuj7pUfY7W92YO + Ld0Ll66H69fDc+vhufUkwWbd9zbrBmyKxDrYrIPNOtisg1f8ohPtdWrRCGwDOAECfu+E + 3zV5BLgPcAog6Dbg7YC9GidugB8L0as7xdJogYJgW9RbESytOo6LPYZqF/YOHVa67Qcu + IVELxIW9CZZBatVs23Xb9t6EZE3a3ps1bIDC6rpqi5hPNwM4pQHnAsoBdQBJzI/mlijH + xBRabqKgRdnAN4gN0gZZ8tex1BOilBqxMyiUKoooAINCpSXARrcmdCRsTBC2BGeCPyGY + 0JggrxAbxDYhFFEiqsRU0SJk7TFtrCzTnhVXGyrLtiftTYok9SWdSpIjhj7DKcMZwzmD + 7DT4DUFDo6HV0GHYaNhu2GtI2G7YbuStSR1JG5OELcmZ5E8KJjUmyYqR7a2+XczDMAnY + BugAbAdI8HEL5E5xLaAFs9ECt10LOQETOBvgFPJnQGVwVthZYWeF1AqpFVIC1jSNgFZA + B0DT4v4UWNM4AX7AGcA5gAGQD60FUgtxyC2QIweYCM4MzgzODKtT/CJ6aAN2AhoBQped + QQ5RA/y9zj+obwU1kKY/B+B6OU0XBAh+MdiW31fIIoVsbyHbXsiCgarq0qAbKDU1tUVt + 8bQUtOyTVqgrPCsKVuyTpqpTPVMLpu6TqtQqT1VB1T6pRC3xlBSU7JMUVfEoBco+aduk + Q5NOTDo5SWqZtGLShkliNKauN+r14yQG6vZo9HB0aFbpaGv1WH4Iw2kB3gM4DRCkAJcA + qgArABI/BKzwJyB9AtInaCqgBSCjxBMobwXW9JpOk+8ByHruNHL8Cr3AwA9GK8umVk/E + ltsC2AMQqPsgyh/UrQdyh3R5BPiMLp8KrNnvBWi9PHi5jMAGN0frB7ACqAK0ADoAMp0U + s/FwmK3VDKwAOgCHAJKYgzRbzOZPIB3kB4UvaB6RrlBGBh43qSkmW7WNJyMGzGy/jh/U + 8Z06rtJxbtAy0fz1RPOzE813TDTnI8MLcBlsZjt07AomVZufqjZPrTYXVptRWyYe8Wae + rmODhtnnOp6iY18wzWX+1mX+h8v8pcv8sMu80mW+yqWVy8baNfM0HSdpGLf1Gp6o47xg + kmJ+QTHPVsyjFXO1me1m6APV6DhHxw4Ns/NPWeuslHCcnce3LTNn0UChEuOkExaPBqqV + GOuPBq4GuRQN7Ab5ZzRwn/IM+5bpjzT2dTT3I6U6nV1gE/AtU2H/GKRfsgm4N1bwIjcB + N9gKe4wCzAP6i2hgk2b/KMo/BP7n5DZp5R7BjbhG9+C7kCZ/eLDcz6K+eWj1p1HfWrT6 + EM7PmtUDUd9HkN4X9d0Jcm/UtwxkW9SjdXBpNDBcqU5hiyiXa7bzycO1nkwabHE8al4G + /uqBwqGoTytVpzUQY7VRdQRIvtbLZ5hKjXpzSlTVBzmMVL1z2aTqnXaQR6cWZtU7b8bB + SGvSFFU3oRbDU56PlP8ZOK4NHJ8srdHdyp+fwfhmgf1vNiF6QHn1qOauqHLSF2OeI8of + 1OPK87kxNiuq9PliJihO+GKcHVZ64OQIbDk7ohzyLVKeUHXtPhVaTPWeQJHyU3WOsssD + Pqps8j2jdYOWY8SzoA77ximTAgeUek+MQR0MoLFgolKprlIqIB4TYxN6DygjcmNaV/yo + 48ARZThazFP1rswcfYyPJCPrCvqMq/HRa5ZxmnGsscxYZHQahxmzjWmmVJPNZDElmxJN + JpPBJJm4iUxpeKsLerUjX5pBP00asG0zkvS8DVsjrgmwqLDrc2biWDuRIaKBN8yoYZHU + BmpoqomM9jbEjPHpkTHehoip8SfNPYzdEwYX4VtijJqaYyyuiW534EINrxWMldx+N94r + GFt3+93hMGuI9M2nhnnOyNczMI7EaXMislpjp4w1Vfaq1HEpFfV1/wa16sLWuoG3Tx3j + 8P2jn31YZGfDjObIL4eFI6VaJj4s3BC5WrsFP4oPzytCdUd5h0bCzUfZTXxlaLomZzfV + hS+bkZt3wIwCGtHMesmtmeFE3aubTdJrQ5i6Q3U9biDN6Dk2QTNC+DynGy3SjRDjK7W6 + GjUCM55DuXpduTxHM0M8DFRm/XFlycSsemXWZNIry9aMejwetOcDCjf3jPbAoMczWlcf + +EGt6uqjLEyawVHc8IT1dpjezkAVBQM2iIJBG26CzY+c+P+eba/5v6iD9ba9v2B+CN8i + WtVQO6A1snXNYntk4zyns2fB+5rCGRF5rfPmL9ZoW3vkfbW9LrJArXP2tOnl/kU9X1O3 + qXU9ND/U1NwzP9heF20LtoXUtrpw72MbahuuaOvOy23Vbvg3bW3QKqvV2npML/cvbTVo + 6se0thq0thq0th4LPqa31TC9hjU0NveYqCaMWxad9vKkRKyHVocrXJNh6xinL46xLvst + jmMS4bGVhE8EyfikZAZo66aouqhaU2F1aiqL9rVpUGW/ZazLcYztH1TZIE5Ra/B51h5a + Unf5r7Ozc7UGXV1e4NVdmhIZLFrXjIZIPb4PRAKRQAifW+rC+vVn1+CvtjloOxE4GeAr + AhsC2wJ7AocCcldXGOLUE+6Tbt7iXuHe4N7m3uM+5DZoimuajwQDe9x/d4suRBNbjV9I + awpNg+JPY1d3oTOdnYRGOgFer9aat8tb21ztpvk47TKczItoCEAFlAFmAGT6H8CvAf4M + +AdAoluB7wM8CujVJPivgSJ8qajTWgyjxqP4rF/a6x9ZOiYG2rZwgM6YM0BDUwZooLrU + Dn20qiyx2oqDN6NjwC8B3gX8FfBPgCxKRaleOfqs/cKd1In74q4u7SpstYY6vavxn0kY + uebu1Z1eLww0HgJw8K3uXvCDP2KdXQRXYEJAYKTLO7ViaANlB3+aAlvx/wIZLLaHCmVu + ZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKNzEzMwplbmRvYmoKMjMgMCBvYmoKPDwgL1R5 + cGUgL0ZvbnREZXNjcmlwdG9yIC9Bc2NlbnQgODkxIC9DYXBIZWlnaHQgNzkyIC9EZXNj + ZW50IC0yMTYgL0ZsYWdzIDMyCi9Gb250QkJveCBbMTcgLTIxNiA3MzEgNjk0XSAvRm9u + dE5hbWUgL1ZSWVlaSytUaW1lc05ld1JvbWFuUFNNVCAvSXRhbGljQW5nbGUKMCAvU3Rl + bVYgMCAvTGVhZGluZyA0MiAvTWF4V2lkdGggMjAwMCAvWEhlaWdodCA1OTQgL0ZvbnRG + aWxlMiAyMSAwIFIgPj4KZW5kb2JqCjI0IDAgb2JqClsgNjY3IDAgMCAwIDAgMCAwIDAg + NzIyIDAgMCAwIDAgNTU2IDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAw + IDAKMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAg + MjAwIF0KZW5kb2JqCjEwIDAgb2JqCjw8IC9UeXBlIC9Gb250IC9TdWJ0eXBlIC9UcnVl + VHlwZSAvQmFzZUZvbnQgL1ZSWVlaSytUaW1lc05ld1JvbWFuUFNNVCAvRm9udERlc2Ny + aXB0b3IKMjMgMCBSIC9XaWR0aHMgMjQgMCBSIC9GaXJzdENoYXIgNjcgL0xhc3RDaGFy + IDEyNCAvRW5jb2RpbmcgL01hY1JvbWFuRW5jb2RpbmcKPj4KZW5kb2JqCjI1IDAgb2Jq + Cjw8IC9MZW5ndGggMjYgMCBSIC9MZW5ndGgxIDU1MjAgL0ZpbHRlciAvRmxhdGVEZWNv + ZGUgPj4Kc3RyZWFtCngBvVgLdBRVmv5vVfUjIUUSEkjIg+q2SMi7ExoSIiHpQHckiUAI + Abt5dicEkkh4SAziCIkyvBpYszqCaFR0HIYZnaHSRE4HUFllRmfUM5yZZZh1QIcdxFnU + XXdHcBeGrv1udUTxcPZ49uzZuue///tx/3urq6qJEVEc9ZJIrpbOwFoaQdMgeReQ1tLd + ZXu6vaoc9F+IpHEr1q7s7O/aYyYyWQE7Vq7auOJV4Y2XiWL7iER/W2tg+dVPr+4mkj+H + T2kbBHHjYu8nGpkDfnxbZ9cD8X30Mfi7wcetWtMSYOPYJfBe8NbOwANrrXdZzoP3g7et + DnS2Nhw8cA58L/jxa9es79I7qBX8i+Bz1t7XuvZff7X5LHjUa34TMobBrzgy00hgOwmQ + CKi2iwRTPWUCUsV9lESk/xnwGeByZDr00EVe1X8vjoPXIAchUlVB2ZRBm+hJdGcTfUCT + KYVy6M+sEvwgnaYP6W5aSKeojl5id1GQZlM5dbJpNJ79lkrJQ8/Sa/DYSGtgW0N/j2oG + 6Zj+BmSl9BKF6SrFUCb67UWU3bRfP0UH0Okr+vP6ZXLSVlic0f+ZHNid3VhDGmUhZget + ZYVCl76dKpHvSTpGH7AxeiWNpklUQW5aSW3USavp+9C9SmfoLMvAagqpGHlq6B7aRY/T + PtLol0xh32PPSDF6G3q6ABV0wO8xrOY0dujfWSJ7nb2lZ+iDuo7cKk2h6Ya+n56h5+kF + vhJ6C+MifcbmsXtEVZyky/pE/Trs49E1F9XTYnh00kNYyZP0C3oH40NkzWGlbD5by3pZ + kL0lTBeTJItptv4IqrSi39Mw5qD+9ai0j55ADw/RzzDepN+h8zFMFaqFXuELMVF0SXNN + 3XqPflh/Tf8NdsSEHS9H1nrsShc9QDtoJ9bzGB2lN+gP2KvP6QazsASWghoG2Xn2iUBC + opCLaL8W14hB8bBEUr903lRp2h45GLmor9Sf0N/R/xOrF8iC3udQGcYU5KiiuTSPfLQc + vb7XOB/76TAN0BB6d4bep/N0gyI42aWsjE1nC9mD7IfsFHuXfSkIQoKgIGeusF14DuOk + 8K5wRkwTM8UcsURcKu4VnxMPSY+blpvWmX5gGjB/YtkRaYksj3RHHoqc0Ov1ffrL+klU + Y0c1fE9nUi1WO5easIMr6EGj10F+llDPEXoF4yiqOk4ncEefpgv0Bc7c39CHGKMPqehE + MStnFawSdc5gblbL6tkc1oT9uYd5WYB1sE1sM/s+68d4hj2PdQxiDLHj7B12mp3FuMg+ + xfhSMAkWIVVQhWzBJdRj3IMREFqENqFd6BT2YBwUDguDQlgksVKsEQMYmnhSPCOeFT8U + /0tKk7qk70n/IL0rvS9dlP5DumpKMBWb5psWmFPN5eZu84vmI5Z7LT+zvE8h9PjnWNM3 + rxbaKOwVrtFm4S7cZ28TCb8WZmInNrEj7EV06kfUj/tjEp3DcGGUYMRiPIIe5mGQa0J2 + 1nj1DrtNGZeZkZ42NjVlzOjkpFGJCfEj5bgRsTFWi9kkiQKjAo9a47dp2X5NylZnzizk + vBqAIPANgV+zQVRzq41m434BqG6xdMFyxbcsXVFL101LlmCroIrCAptHtWnvuVVbmC2c + 6wW9x636bNpnBj3LoPsMWgZtt8PB5kltc9s05rd5tJrutqDH7y4sYEMudC+2sACHA90Y + wQNrNCOwqS0ViFt4tDTV7dHGqqChE7M8geVaw1yvx51ut/sKCzQ2o0Vt1kidrsXnD7tz + PxtMG73IXVjQrqF+2hW3XF2+K+yiZj+nAou9mhjwaYKf50jM11JUt5by4EepX7NfUZ7d + 31BqQlZNoDVYo7n8u9B0zvo5F9gNrn6eDWGFrT6vxraiOF6EUXt0Fa2qh0v8HTYtRp2u + tgU7/Og5NXpDaa40jxpw+zRq8IbGusYaTGHBUOrmqXY0ZaiwurCa46n21M1R/PGWqPy3 + JzlO3XzqT8D1jTf7wngmtRZlarYWI4mKWqfwqXUKBVumoH24fAyrbNdiZviDCXdiPzRT + VoJqC14hbJT62ae3SgLDEnNWwhXiSr6dN0+Ehts0ejrCNKGgPkwxDd4Bxv7OF2b61jC5 + M4fwlBGXLS0MUw4/Du1ueIPJLYAgzw4qr8BWg6pr+L7ZgrZg7fKgrcbWhg2XsgwMRWvQ + 58By5nnbMTd57ZrLl36TbPX57kScfB4HLjAP+hChYzgCsCFy3IBRQUE9WpTd4J3r1Xrd + 6ZrL7UNLcMRONni1kzhdPh+ssMbhSoE3tacO11yEmgvzoHdEo8xDDITwBYM85jyvatdO + BoPpQX5PRPkwo28LXMOCMHETflTCrLcBvkCqPZ0LVLtqR1k+N1IV43h9tb1hKvmfOzzx + Zt3wdKLaiUaHJ/0fdXjyd+lw6XfqcNnNSm/p8BTUXMY7XP7/1+E7v9FhPGvteBvbh/cx + Ec+5GYMCqzWZw2yBK4MkS61IsSapVhSFtBizpZbRWGvMJ/aaxtT8/NlfVMy6UTE74WrF + rIQbFVRVcaMi4QtMJcXORHviBIDd1B2+fs1Uf+2VsPjHv2XhB1CkDv1TyWraT2PxDJjK + RuAOyg9ThSNM0wAVCWGi0wDOg447F6aMc9UmPFcy6DJAWFKdjpsrA+4ZlAsoB9QCfIB2 + wEbATsB+wE8AQ4BfAeQlYUpD5DREJkTOOYdAZjzTxwCyAaWAGsACwApAN2AbYC/gIOAo + 4JcAeQnKOQPiI4CAqHmImoeoOYiaDzp/mC4EnQFZ+TCeCjzVgXc4J42ivPxjyH6HgfMo + H7i4JCm7rBRjTAqGZZTFjJE9wRhZk6J4ApdhZLJkbpQyxjnRcCmd3Cm2TPZ6t29f4nX6 + BWGhY/HCvj3ehc5Jo5KFf5TMaSllZcsWlk1OH2u2Ws0pYyeXLQ2Ul6WkSpJw9sLlVTUz + BGFGzarLFyLXLq+u8QiCp2b1ui09LzR2tDc3u6oEocrV3Nze0ehc2bWhfYXb43GvaN/Q + tRLbif1cHFGla6ateBseRxNof3Q/c9ADCeuVeLfPVYt4P8WXwhIQ/q8Im0HABC1Kwzab + YW7m5uDVqIsadbHhXXjYlxNhioc5N0saxuPgOg6uSZApoBXQ8aBzz+F9PgZMsqO4xIRO + iry/Sc4k3jsBjUxSk9DN0byZTq7ibRZW/G5fvyS98OyHca64C88ekKSn9p0x700/7vUu + W/zMtucXLhIW+E4kx27oYnRpy5ZY9vNIY+yWLZd06toQGykzbRjd03Pw0Kae5OSeTYcO + 9vSMHv4+onRp9/xl8RVXWCI+5XC9veP3/3IT2yMq7sD94GO+sufYTBGI5F9E/JGXLcdv + argbv0TTW2SX1lOHaQHe/PH9hzdgzbASaR32Zi+iCZSAMZXI8hfzmyQZWoYTGP1qM4Oi + 2Q0NvoX1+U3tna3rCxvXdAZWw8u49Fb+7XebS4zK8OuMu3dCvis+5jdNLL6JVZ3OZc81 + MVe1zK4jRbEx24w5wZiJXXeNYGRjfRbWZ2afV88ReE3/JoiYT+Jtj+GBrJMG6nXBijUc + BnUYlEDPCRw41YPyesD1gHsU9KOgewUTsBW/YGsgWQPJGkjWQCLRMnANyLAMnEhzwPGs + cwyuGFwVuGKDcyCbA5zD4BTBGmJW1zH2EZvFGl+JV95YN1I5gRf2WdRMCisJbZujvMYO + ko1k9qgxP+IaaZM/sMnv2+RHbXKPTX6N7aIGqFcZM3ONbJD/0CDPaJCrGuQ7G+TjbCr/ + TWGiKzlHfjVHDufIP86RH8qRu3Pkwhx4D+BTV2Y/NuYfuGx18pd18tt18pN18tY6+cE6 + eUWdbK+TmzPk8RlyeoYcZpuPxj8W3xdPMSAH++TH+iC7cqTEoVSH2V9fcSr5BaVKmO0M + NRUAbQk1vaRUj2YPU67EsKJeykUDFPYQuQ28kRUb+AFWbOg3hBy5cFsfqnwWaF2o8iLa + cS8VGcqOkPMipFNCTUuV6hjmHI45kdxWHrMwVPk41HmhgveU6kQ2gYpYFsTjyWmoVXIa + Ue4YxuZQUzbMTYMoVM8NMxZSIjvCAjuqXHc0KleLwhIkV4rCVqALuWHhpZBy3gHkSlH+ + 6Fiq/FNlnXIKEd5suqi87lilHCswHH7iPsGz0CF8hT3lGqH8yPG48qJjp/JCpaE+4DTi + 7W0y0BO5EB5VdiLM+iI8EEPKfU6eYYRyLyJ2FNQrLRA/5YpXigrKlHmO48pcx33KnGim + WrcRcabjmLGsv7rk6kyl2pGpTKt8T5nqxkpCSjl3DymTosknFhnLK6m8W8nH8qSjSl5T + iXIHUjJXoTJ/pWWZZb6lzDLZUmzJtmRZxlkyLcnWUdYE60hrnDXWil92q2TFubUmh/U/ + ufLxg0vJ5gSOzBKfJYNOwN1h/D+DmQRmFXC0+HurxvaM6a5KrRpVmVhe477N5DeEfnf+ + 7a5MbS/e2bSfZvq0iZzQM3312mT+kTDEPmYfedxD7BJHPvB29rGn0ZDb3T5far12d4M3 + zC552sNQtAc0F1deggDfGjCo1xYYcSgXIvcQNXGEOEIp5fI4OLKlhtnOqJkDUWDm5oib + XSSHYeYQLhpm73GzgR25HvdALiaYmIpoh2Gyw1TETdDwaOXFcHUPODDBKlZjxUbdxbGa + ESjTCOR0wqQSk887MNEJgwHnREPt+FpdEFU3RtWNhnrR1+qiqPpAVH0A6tu1+H8ja53+ + 3byOLHr64X4Pvtr8qqcV4Nd2dePDtLfZZht4+Gmu4G/3/uaWNo4DrdrTaqtbe1h12wYW + GX7fUvdz9SLVPUD9nibvQL+r1R1a5FpkfOwd2bZnneeWXDtv5lq35za59vBg63iubYbf + t3J5uHobz+XhuTw81zbXNiMXX72nfd709be5uu6/f+n69UvpvwG0s56kCmVuZHN0cmVh + bQplbmRvYmoKMjYgMCBvYmoKMzY1MAplbmRvYmoKMjcgMCBvYmoKPDwgL1R5cGUgL0Zv + bnREZXNjcmlwdG9yIC9Bc2NlbnQgNzUwIC9DYXBIZWlnaHQgNjY3IC9EZXNjZW50IC0y + NTAgL0ZsYWdzIDQKL0ZvbnRCQm94IFsxNiAtMjMzIDY5OSA3MDBdIC9Gb250TmFtZSAv + TlBQWVpLK1RpbWVzLVJvbWFuIC9JdGFsaWNBbmdsZSAwIC9TdGVtVgowIC9NYXhXaWR0 + aCAxNzIxIC9YSGVpZ2h0IDUwMCAvRm9udEZpbGUyIDI1IDAgUiA+PgplbmRvYmoKMjgg + MCBvYmoKWyA1NTYgNjY3IF0KZW5kb2JqCjI5IDAgb2JqCjw8IC9MZW5ndGggMzAgMCBS + IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4AV2QwWrDMBBE7/qKPaaHIKdn + YygpAR+Sljr9AEUaG0G8Emv54L+vpJQUetBBs3ozs9LH/r1nn0h/SrADEo2enWAJq1jQ + DZNndXgl5236vVXNziYqneFhWxLmnsdAbauI9FdGliQb7d5cuOGlaB/iIJ4n2n0fh6oM + a4x3zOBEjeo6chiz3dnEi5lBuqL73uW5T9s+U38vrlsE5UaZODwq2eCwRGMhhieotmm6 + 9nTqFNj9GxWlNH8m2VUkh9T1an7x9YznD8QQi089P/+6Y8cKZW5kc3RyZWFtCmVuZG9i + agozMCAwIG9iagoyMDcKZW5kb2JqCjEzIDAgb2JqCjw8IC9UeXBlIC9Gb250IC9TdWJ0 + eXBlIC9UcnVlVHlwZSAvQmFzZUZvbnQgL05QUFlaSytUaW1lcy1Sb21hbiAvRm9udERl + c2NyaXB0b3IKMjcgMCBSIC9XaWR0aHMgMjggMCBSIC9GaXJzdENoYXIgMzMgL0xhc3RD + aGFyIDM0IC9Ub1VuaWNvZGUgMjkgMCBSID4+CmVuZG9iagozMSAwIG9iago8PCAvTGVu + Z3RoIDMyIDAgUiAvTGVuZ3RoMSA1NjMyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0 + cmVhbQp4Ab1YC3QUVZr+761+pZNKupOQNHlQ1emkSUgnnaRJQiQkldAdIQEJIUC3CHQT + GhIkPCRmROU5A4QGFkQFZkTBWcdxlBkqncDpgAoruOiIR864yOgM6CwBXTHzEnBGpGv/ + W4korMfj2bNn656693////3ura66DQQA4mAtcCC1tAeWwWh4FiWn8V7c0tkhPtVWXQFA + xgBoRixYtrB9b8c2HYDWi3fXwsUrF7z7T+kKgPEjAK6jNRiYf/39f5gB4pvRv6wVBXEj + jJ3Ib0U+u7W946FkgA7kZeRNi5e2BOgSshr548gb2wMPLTPcrT+PPMsvLgm0B2c8/8QF + 5D9DPnvZ0hUdylHYApBgQn7UsgeCy/785upzyFcC6E6gjGBjVxzowI9jEeQPSZj0+y76 + fcr/oeO0HUC1DZCJt4XbDUkAykW8B/D+NFqL6KAu+oryHjcCfXvZTaPVlWCHDFgFexDt + VXABSiEVcuEiqUK+F87AhzAJ7oWTUA8vkbshBPdABbSTcZBNfgdl4IFn4FX0WAlL0bYO + HgMreh1RXkNZGbwEEbgOMZAJ48CLUbbCT5WTsB8+gWvKs8qn4IINaHFW+U9w4mpvBQpp + kIMxF8EyUkA7lE1Qhfn2wBG4QFKUKhiGO6ES3LAQWqEdlsBPUPcKnIVzJANnU4DIjsMa + ZuJqPA67QYZ/JwJ5hDytiVFalUUwAytYhH47cTZn4GP4GzGTY+SUkqH0KgrmtsEYqFX1 + e+Fp3HE/ZzOBU9j6YYBMIzM5Gzda4ZUS5QbaJyBqEjTAfejRDo/iTPbA6/AWtg8xay4p + I9PJMrKWhMgpWsslafTae5T1WKUB8R6HbQrWvwIr3QFPIoYvwK+xnYB3EfkYYqM1dC29 + ypk5STNV26msUQ4qryrv4IpoIR7xb8A2CffsQ9AFm3E+O+EwvAa/x7X6K9wkemIiqVhD + LzlPrlCgZpqH0X7LLeVC3EENaPZqzmurtJuiz0f7lYXKk8pbyj9w9hT0iH0ulGMbgzmq + YSpMAx/MR6zvV/fHT+EgdEMfYncWPoDzcBOiZATOs5zUknvJw+RfyUlymnxBKTVRAXPm + 0U10H7bj9DQ9y6VxmVwuV8zN4XZx+7gXNI9r52uXa5/Qduuu6LuiLdH50c7oo9GXlQZl + t3JAOY7VWLEatqYTYCLOdio04wougIdVrENsL2E9PXAI22Gs6ii8jL8QZ+BPcBX33FeI + Q4yKgwWRKCIVpJJUYZ3jiZtMJA1kCmnG9ZlJvCRAFpFVZDX5CdmL7WnyLM6jF1sfOUre + ImfIOWz95DNsX1At1VMLtVE7lWgDtpnYArSFttI22k63YXueHqS9NMIBV8XVcQFsMnec + O8ud4z7k/qlJ03RoHtH8m+a05gNNv+bvmutak7ZIO107Q2fRVeg6dc/pevT363+t/wDC + iPFvcE7fvlpgJd1Fv4TV9G58zt4AoL+lE3AlVpEe8hwi9QvYi8/HaPgjNglbMTYjtvWI + 4ShsII2052TbsqyiMCIzIz1tuCU1ZVhyUqLZlBDPx8UaYwx6nVbDUQIOj63OL8p2v6yx + 2yZMKGC8LYCCwLcEfllEUd3tNrLI/AKous1SQssFd1hKg5bSLUtiEiuhssAhemyi/Lbb + JkbIvVO9SG9z23yiPKDSk1V6h0rzSFut6CB6LK1uUSZ+0SPXdbaGPH53gYP0SYiescCB + mwPRiGWBZRgfWNVqwYFZeOQ0m9sjD7chjTouxxOYLzdO9Xrc6Varr8Ahk/Ettnky2Grl + hPwhd+YnommTF3MXONpkrB+2xM23zd8SkWCen1GB+7wyF/DJ1M9ymPPlVJtbTn34kuUb + 9mvKs/VbSpnm1AWCoTpZ8m9B0BnrZ1xgK3IN00QMSzf4vDLZgMWxItTaB2cRtHmYxL9I + lGNstbbW0CI/Yg5N3nCalOaxBdw+GRq94eHScJUpcPRZVo+1Iih9BTUFNWwca7WsHhw/ + /vGg/HfH2WhZffIjHBuabuFCWCbbRCxTFlvUJDasdQzrgmMg1DIG4cPLR3CWbXLMeH/I + dBeuh6zNMdnE0DXAhbINfHa7JDAk0eWYrgFTsuW8tSNkfEwHd0cERjoaIhDT6O0m5F98 + EaJsiIA7sw/fMtzcOQURyGXboc2N3sjkOVAwyorUKIdYh1XXsXUTQ2Jo4vyQWCe24oJr + ctQRFcGQz4nTmeZtw77Za5UlX/otMujz3YVx8lkcdEHzkA8jLBqKgKMqct5EI4ejASGy + N3qneuW17nRZcvsQEtxixxu98nHcXT4fWuEchyrFcVWbZajmQqy5YBTqnYNRpmEMDOEL + hVjMaV6bVT4eCqWH2DMxyEcI3CmQhgQRYCZsq0TI2kb0xcFmTWcCm9VmxbJ8bkxVhNvr + 6+WNQPH3I1xyq270dGG1JSrCo/+PEC79IQiX/SCEy29VehvCY7DmcoZwxf8fwnd9C2F8 + 11rxa2w3fo9x+J4b30vJRK0uQmZIGaDRT+TAqNVM5DiaFqPTTyQw3BBzxVrXZMnPv+dq + 5eSblfeYrldONt2shOrKm5Wmq9gVF7nMVvNIvK3azsiNL7UNXx6KcH/4Kgd/ACkkKgNc + t9aPXw4jYKeUdYBcibuUzL0O78El4IqhVFvBc5MMuv0jtPH7U3jalRihhh7R2JUWofpu + UXCevjpguj4A1QPVA8VF41dKYyAzzm7JSbYbcjLsphyNnU81lgIMo6VEn4mUNgGp2OHx + pUCSsItJ15USzoxdPl5qxwi81pHls2F2dqJ59Ehqy+J0w5JTU1yJ7KWkp9askXazqbzM + RVctsVa9+GK1NUuSL64JVj0Y/ej1NV2zHlFy8HVe/PljJD766RN/v9gV1Y7924mbp+To + oZ5jZAKhR26yubuUC/iObcFvu2w4IKW9n3E59aKF81naLDTXkJKqTdetlgzpVr0+Qmqk + LGTos/YUfUJKamJcYbaNSyxMj8nOFvSBfanHUt9J5VIjVNdjT2gWIlTbbc9RoYnO7k+s + cDJ4KgfMFRXEnFgBaeM+SbNcHSCmtHEDlrSrA2B6U4UuIyOLN2fmWO3mjIRy4LOwM41I + LId4Ma4ckVHBWbcOZpPZkOIqKSt3JdnsI+22LDCbwFVSXlaeqtPrbOIgNNYsLvhpfOZo + Y36SM6929dlz0b8Q4Y/7Nk6+z+4OHngzevi1nldOkWq9tqVWzIqO3tz8TPRA9L3on6N9 + k/Jn2mfULHn3BMkm+W+dRZzi8Sx1CvdjEiTDY1LVj2Bj/K54zsKAjAVC8hKNxtjYvER2 + mIGkWKORxOiJIzmGmmMdSYZYAsbkZCCSKd1qTPSaI9QoGVMkXbrV4NV7IUJjulOGOU9e + u9qPcKRZTDf7T6oEIuXEG781B04jeKeRHscE45ybTNr8Tab8TbizEYrZ5cSapdfpbUnW + YcTKYHBxVhLPrY/mhhsK0krzNBVfbaLxPU2uvKKSGytpMFVz2Ve6nsxJvZE2vWx7dA9O + 7OsT13+8uf/E3ITKa8RswIcD4I2u9/7r1hiPu2U37hbAt8ngmU3100EURfzrUX/0gP7o + LQ1zY5dGewqsGoBE7QxwaS4yLPHs04vYHUGKxdHAcsR4F0alYMI2FkD/ie4EypmWQOJQ + TB1SUNs0w3dvQ35zW3twRUHT0vbAEvRSLyUIwUHqjh6T48qxcwUep4rz8R2ZLyXEvNNM + EppJ9Zk8sq+ZSDU8uYFpitReVHuT2gO5IeEKimSHnuzQkb/WTKGsrr9QDvvj+DVI8IWt + gIzUMWrAX6yDSB1EisI+ym5GrcES1yC3BrntSG9Hei3V4mjAX7ilKFmKkqUoWYoSDcxF + rhEzzEWOgynIsaxTVK4IuWrkilTOidmcyDlVTqCGMDFIR8glMpk0HUoQXlseL7yMH/ST + YR4IpDi8cYrwKnkeRODJdrVfL8WL/AWR/0Dkt4v8GpF/lWyBRlQvVnsixTfyv2/kxzfy + 1Y38XY38UTIWzx084aTkXP6VXD6Sy/8yl380l+/M5Qty0bsbj8I8+aXaPyGJ9fwX9fwb + 9fyeen5DPf9wPb+gnrfW8/My+OwMPj2Dj5DVhxN2JuxIgBgke3fwO3eg7FpPsVOoiZDP + D7mEfEeZECGbw80OHH4cbn5JqBlG1kGehuCM1kIeAiCQR8GtjitJkTo+RIpU/Y/Czjx0 + WxGuegaH5eGqfoTjfihUlYvCrn6Ujgk3zxFqYohrKGYJuA0sZkG46nFUjwo73hZqzGQk + FJIcFGeDS1XbcDczs6yhURdutqO5thcLVfIihISFaFeEksPCDWeTcL0wokHJtcKIAYc/ + 5UXoS2HhvBMHKVX4g3OO8H5VvXASI5xo7heOORcLRxyqw6/cL7Ms8AKe0n4mxQq/cD4u + POfcLPy8SlXvd6nxdjWrw5N5KDwsbMYwKwrxhRkWHnCxDLHC/RhxkaNBaEHxz6QEodBR + LkxzHhWmOh8QpgxmmuhWI05wHlGn9bnE12QKNc5MYVzV28JYN84kLFQw97AwejB5SaE6 + veKqSUI+Tk9zWBjVXCxkYUoiFQjTF+rn6qfry/Wl+iK9XZ+jH6HP1CcbEg0mQ7whzmA0 + GAw6g8aA+9aQHFE+kvLZo56sw7+JCOjwkSWgUWkTPh1Efcbx14ASA8Wtxb5rZbItpbPa + Up1YZa6oc39H51eFfrf6Mr2zy5R34Ted/GKmTy5hhJLpa5BL2SGij3xMLnncfeQyG3zI + W8nHniZVbnX7fJYGeVKjN0Iue9oiqGgLyBJTXkYBnkXQoEGeocaBPBS5+6CZDRiHlkEe + i4Nbtkw12zxo5sQoaOZmAzPrB6dq5qT9qtnbzKy7K8/j7s7DDk20hdClmnRpC5kJAj5Y + eRG6urud2KGVUSZFat1FRlkNlKkGcrnQpAo7n7e7xIUG3a4SVe38Ru0YVDcNqptU9axv + 1IWD6v2D6v2ovhPe/y0frP1hnj2znlq314OnOr/NE8TbL2/pxIPr2nmi2L3uKaZgX//+ + eS2tbAwE5adsQbe8zuYWu2epfneo9zL1LJu7G/Z6mr3de6WgOzxLmqUeBns2blvuuS3X + 5lu5lm/7jlzbWLDlLNdG1e+OXB6m3shyeVguD8u1Udqo5mKz97RNq13xHVfHgw/OWbFi + Dvw3VS+0kwplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjM4MjcKZW5kb2JqCjMzIDAg + b2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvQXNjZW50IDc1MCAvQ2FwSGVpZ2h0 + IDY2NyAvRGVzY2VudCAtMjUwIC9GbGFncyAzMgovRm9udEJCb3ggWzcgLTE3IDY5OSA2 + NzNdIC9Gb250TmFtZSAvQlJWWVpLK1RpbWVzLVJvbWFuIC9JdGFsaWNBbmdsZSAwIC9T + dGVtVgowIC9NYXhXaWR0aCAxNzIxIC9YSGVpZ2h0IDUwMCAvRm9udEZpbGUyIDMxIDAg + UiA+PgplbmRvYmoKMzQgMCBvYmoKWyA1MDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAg + MCAwIDAgMCAwIDAgNjY3IDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMAowIDAgMCAw + IDAgMCAwIDAgNjExIF0KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9Gb250IC9TdWJ0 + eXBlIC9UcnVlVHlwZSAvQmFzZUZvbnQgL0JSVllaSytUaW1lcy1Sb21hbiAvRm9udERl + c2NyaXB0b3IKMzMgMCBSIC9XaWR0aHMgMzQgMCBSIC9GaXJzdENoYXIgNDggL0xhc3RD + aGFyIDkwIC9FbmNvZGluZyAvTWFjUm9tYW5FbmNvZGluZwo+PgplbmRvYmoKMSAwIG9i + ago8PCAvUHJvZHVjZXIgKE1hYyBPUyBYIDEwLjUuOCBRdWFydHogUERGQ29udGV4dCkg + L0NyZWF0aW9uRGF0ZSAoRDoyMDEwMDgxMTIyMzgzM1owMCcwMCcpCi9Nb2REYXRlIChE + OjIwMTAwODExMjIzODMzWjAwJzAwJykgPj4KZW5kb2JqCnhyZWYKMCAzNQowMDAwMDAw + MDAwIDY1NTM1IGYgCjAwMDAwMjA4NTMgMDAwMDAgbiAKMDAwMDAwMzkxMCAwMDAwMCBu + IAowMDAwMDAxNzA2IDAwMDAwIG4gCjAwMDAwMDM3NjEgMDAwMDAgbiAKMDAwMDAwMDAy + MiAwMDAwMCBuIAowMDAwMDAxNjg2IDAwMDAwIG4gCjAwMDAwMDE4MTAgMDAwMDAgbiAK + MDAwMDAwMzcyNSAwMDAwMCBuIAowMDAwMDAyNzc0IDAwMDAwIG4gCjAwMDAwMTE3NDMg + MDAwMDAgbiAKMDAwMDAyMDY3NyAwMDAwMCBuIAowMDAwMDAwMDAwIDAwMDAwIG4gCjAw + MDAwMTYyNDAgMDAwMDAgbiAKMDAwMDAwMTk0NiAwMDAwMCBuIAowMDAwMDAyNzU0IDAw + MDAwIG4gCjAwMDAwMDI4MTAgMDAwMDAgbiAKMDAwMDAwMzcwNSAwMDAwMCBuIAowMDAw + MDAzODQ0IDAwMDAwIG4gCjAwMDAwMDQwMzYgMDAwMDAgbiAKMDAwMDAwMzk1OCAwMDAw + MCBuIAowMDAwMDA0MTE0IDAwMDAwIG4gCjAwMDAwMTEzMzcgMDAwMDAgbiAKMDAwMDAx + MTM1OCAwMDAwMCBuIAowMDAwMDExNTk5IDAwMDAwIG4gCjAwMDAwMTE5MjYgMDAwMDAg + biAKMDAwMDAxNTY2NiAwMDAwMCBuIAowMDAwMDE1Njg3IDAwMDAwIG4gCjAwMDAwMTU5 + MDkgMDAwMDAgbiAKMDAwMDAxNTkzNyAwMDAwMCBuIAowMDAwMDE2MjIwIDAwMDAwIG4g + CjAwMDAwMTY0MDYgMDAwMDAgbiAKMDAwMDAyMDMyMyAwMDAwMCBuIAowMDAwMDIwMzQ0 + IDAwMDAwIG4gCjAwMDAwMjA1NjUgMDAwMDAgbiAKdHJhaWxlcgo8PCAvU2l6ZSAzNSAv + Um9vdCAxOCAwIFIgL0luZm8gMSAwIFIgL0lEIFsgPDZlZTg5NDg1Yjc4Yjg2OWVlYzQ0 + ODg3MDAzYzY1MmIzPgo8NmVlODk0ODViNzhiODY5ZWVjNDQ4ODcwMDNjNjUyYjM+IF0g + Pj4Kc3RhcnR4cmVmCjIwOTk1CiUlRU9GCjEgMCBvYmoKPDwvQXV0aG9yIChDaHJpc3Rv + cGhlciBEeWVyKS9DcmVhdGlvbkRhdGUgKEQ6MjAxMDA4MTEyMjIxMDBaKS9DcmVhdG9y + IChPbW5pR3JhZmZsZSA1LjIuMykvTW9kRGF0ZSAoRDoyMDEwMDgxMTIyMzcwMFopL1By + b2R1Y2VyIChNYWMgT1MgWCAxMC41LjggUXVhcnR6IFBERkNvbnRleHQpPj4KZW5kb2Jq + CnhyZWYKMSAxCjAwMDAwMjE4NTMgMDAwMDAgbiAKdHJhaWxlcgo8PC9JRCBbPDZlZTg5 + NDg1Yjc4Yjg2OWVlYzQ0ODg3MDAzYzY1MmIzPiA8NmVlODk0ODViNzhiODY5ZWVjNDQ4 + ODcwMDNjNjUyYjM+XSAvSW5mbyAxIDAgUiAvUHJldiAyMDk5NSAvUm9vdCAxOCAwIFIg + L1NpemUgMzU+PgpzdGFydHhyZWYKMjIwMzMKJSVFT0YK + + QuickLookThumbnail + + TU0AKgAABS6AP+BACCQWDQeEQmFQuGQ2HQ+INSJRCKQ8WReHQJ/xWOR2PR+KRJqRcWSC + QxKSRmByaWS2GvWYP6ZPmaP2bBOcASdQiRSmFPOgOihPuiToCBmkA2lQuexiGxqXVGpU + B5vSrUgMwV7VuhOgOV8DWGC02SwerPRwWkR2sE219W9sXERXMGXWeSinQyoVK+SazvJv + toACUZBoEQa3vp8YsHY2x3iywZr5O5iJ4ul4hYPBaCzJ/NnQCnRXeR3mF3u+6mOPV2tN + bqtfAkckoYh4QhoIgSCt7ePffQVt8ES8NTcUB8cs8kQgtzplUNoemAyDILbqCbxvZXST + 69SvVd+HufxA2BPgAO1zgAQi0NAyiPt3/ELfPH6UWV22gnxOfhh1rGWcYShwFDDoMasD + hXBLttMhTUPBB6FHVCSjAlCrOpkdsMgVDYFw6+ruIKdcRHhEgSRMAMUIKcUVn4fh1HAa + h5AWC4KhUG4WnCyCVI3CEeoQjRyyCuoGJofKNAxJCmR0hUgnLDJ2gLKIBSnDoFq+BZMi + gNwPksT4kA0AiyR3H0yNTMSIQOasEhWg51mGXxsH2dx3g0I4nH5HMQQa70yz6liRI6bl + BRMEiOz0hMHT9RUyzTNbwUTRdIwfRsFO/SFJUwvtKTZS0+KjQFM0lQRuUJR9PJdM9Qz7 + TdTR4vlU1VMlWU7VypVhWMe1m1VLz/JbVVBXAAVHUqou5XiTVvV9fUk3x7jzZ4/2iCNp + pBVNj2rZa+2TRT3j5bw/XBKtsPsgrUMWfD3rOjT5uqnaFWSqhzXkjSNAheysSVciD3kc + x439KYBIKEGBgPgqQHdhBn4UqgEYaGmHgpiKO2sgSqKorEUACmx+ybCoJSHBbIyKY2SB + zk2GgQjS4mxiIKArl+QoLUcogKD2bYzc5tZ0E+eYKA6KRIeBZaGsIDOOAbPPid4qaZlq + T30ACNaCexxmmbAABOIQWs4giNREdd2NIE2xvfCR1YiCB3nAcj1BSDwGOtYVBxM0gP7t + DYFNAbIMgYARsnMAAYQHAqYHqrq1hGhdm4zkhjHSchtnSdZ7geDINgYAuooE/Im87p9j + IErZ7HgbBhGeeALhiGL2Nygsm6ChDgm2cfaGt2wxdwGQZBCZZgmYAAPBuHASAigq0nBw + vYuCU/mCN5wj+gCh/HIYx2BEITqQufxi+5jyFlF8G8dUGJ2moYJwAiGAWAiw4BoNjOmC + pz68o0cn7K+Dh8HMaZtvU9gDGvIibCQckRwwSmJbMkgDAAy3gAWmgUgrKwUQTNI/hIbx + wOATAcPIAACgLARAYQVwo6YSHaIU8kggyYVISHOPUeQ+AEgRAc5kgxRgow3fmZEjST1m + gbh8xkjTZm8FKAazEgjhRvxJbGCZopBX7DkLPBMFERgAIrHExkDsWSCmJdkZU/JFB2Rh + FrGNlDACNFUCFGkEMawAD4PiPwAA6RvjkAIBACgEwKgZHKNxqBqGlLnM8fkxoDijL5UO + VQ7DeEWj8iJD4DbGYqG7N4udmkiwNSXAfJkkDZhlydSKz4F0oYsgdIKPwd43BaisGcDU + MoVgFDkGyOwBYIx8DlGw6BWqn1srKagsEhsphxDBF6MgAwLAcAjAYPwewCwPS1lu/RU5 + LVty6l7L4hg9F5AAAsBIAA/DDjucABYdw4Jnw6mir2asvJrHglwmaXc654EEHoOIa41R + iDPHGCgGIM1rkfmnPGaw7xsDNGiLkZY7AhA/BfP0j0/6ALBHeNQZI0RyAFBeEQEI7SAg + AA4BAAADAAAAAQA4AAABAQADAAAAAQAiAAABAgADAAAAAwAABdwBAwADAAAAAQAFAAAB + BgADAAAAAQACAAABEQAEAAAAAQAAAAgBEgADAAAAAQABAAABFQADAAAAAQADAAABFgAD + AAAAAQMMAAABFwAEAAAAAQAABSYBHAADAAAAAQABAAABPQADAAAAAQACAAABUwADAAAA + AwAABeKHcwAHAAARHAAABegAAAAAAAgACAAIAAEAAQABAAARHGFwcGwCAAAAbW50clJH + QiBYWVogB9oAAgADABAAAwALYWNzcEFQUEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + APbWAAEAAAAA0y1hcHBsSrb1jWR6eqQBTkdM1coLNAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAOclhZWgAAASwAAAAUZ1hZWgAAAUAAAAAUYlhZWgAAAVQAAAAUd3Rw + dAAAAWgAAAAUY2hhZAAAAXwAAAAsclRSQwAAAagAAAAOZ1RSQwAAAbgAAAAOYlRSQwAA + AcgAAAAOdmNndAAAAdgAAAYSbmRpbgAAB+wAAAY+ZGVzYwAADiwAAABkZHNjbQAADpAA + AAI+bW1vZAAAENAAAAAoY3BydAAAEPgAAAAkWFlaIAAAAAAAAFt8AAA0xwAABrNYWVog + AAAAAAAAc8UAALNEAAAe9FhZWiAAAAAAAAAnlAAAGBAAAK1+WFlaIAAAAAAAAPNSAAEA + AAABFs9zZjMyAAAAAAABDEIAAAXe///zJgAAB5IAAP2R///7ov///aMAAAPcAADAbGN1 + cnYAAAAAAAAAAQHNAABjdXJ2AAAAAAAAAAEBzQAAY3VydgAAAAAAAAABAc0AAHZjZ3QA + AAAAAAAAAAADAQAAAgAAAYUDGgSmBjEHuQlGCtEMXA3sD28Q+BKDFBMVmhckGKsaNBu3 + HTwewyBHIcYjSCTEJkYnvyk5KrAsKC2aLw0wejHlM080szYZN3c41DovO4U82j4sP3hA + wUIKQ1BEkEXORwtIQ0l7Sq9L4k0RTj9Pa1CVUb5S5VQLVTBWU1d1WJZZtlrWW/NdEV4v + X0tgaGGDYp5juWTSZexnBWgeaTZqTWtlbHttkW6lb7lwzHHecu9z/3UNdht3J3gyeTt6 + Q3tKfE99UX5Tf1OAUYFNgkeDQIQ3hS2GIIcSiAOI8onfisuLtoyfjYeObo9TkDeRGpH8 + kt6TvpSdlXuWWZc1mBGY7JnHmqGbepxTnSqeAp7Zn6+ghaFaoi6jAqPWpKmlfKZOpyCn + 8qjDqZSqY6szrAOs0q2hrm+vPbALsNixprJzs0C0DLTYtaS2cLc7uAe40rmdume7Mrv8 + vMe9kb5avyO/7cC2wX7CR8MPw9fEn8Vnxi7G9ce8yILJSMoOytPLmMxdzSHN5c6pz2zQ + L9Dy0bXSd9M40/rUu9V81jzW/de82HzZO9n72rrbeNw33PbdtN5z3zLf8eCx4XHiMuLz + 47XkeOU95gLmyeeS6FzpJ+n16sXrl+xs7UPuHO7379bwt/Gb8oLza/RX9UX2Nfco+Bz5 + E/oM+wb8APz7/fr++v//AAABWwLzBGwF7QdpCOMKVwvVDUsOyBA+EbcTLRSpFhsXkxkI + Gn8b8x1lHtUgSSG1IyQkjyX4J2AoxiorK4os6S5GL50w8zJGM5c04zYuN3Q4tzn1OzI8 + bD2hPtNABEEwQlpDf0SjRcVG40f/SRpKMktHTFtNbE58T4xQmVGmUrFTvVTGVc5W11ff + WOZZ7lr0W/pdAV4GXwxgEmEYYh1jImQnZSxmMmc2aDppP2pDa0ZsSW1Lbk5vT3BQcVBy + T3NOdEx1SHZEdz94OXkxeih7H3wUfQh9+37tf96AzoG9gquDl4SDhW2GVoc/iCaJDIny + iteLuoyejYCOYY9CkCGRAJHekryTmZR1lVGWLJcGl+CYuZmSmmqbQpwZnPCdx56dn3Og + SaEeofSiyaOepHKlR6YcpvCnxaiZqW6qQqsWq+uswK2UrmivPbASsOaxu7KQs2W0OrUQ + teW2ureQuGa5PboTuuq7wLyXvW++R78fv/jA0sGswobDYcQ9xRnF9sbUx7LIkslyylPL + NcwYzPzN4c7Hz67QltF/0mnTVNRA1S7WHNcL1/vY7Nnf2tLbxty63bDept+c4JPhiuKB + 43jkb+Vm5lznUehG6TrqLOse7A7s/O3o7tLvuvCf8YPyZPNC9B/0+fXP9qT3dvhG+RT5 + 4Pqp+3D8N/z9/cH+g/9D//8AAAEDAiwDPwRVBW0GigehCLkJzwrnDAINFw4tD0AQWBFt + EoETkxSoFbsWzRfeGO8Z/xsNHBsdKB4yHzkgQSFJIksjTiRQJU4mSidFKD0pNConKxgs + CSz0Ld8uxy+tMJExczJTMzA0CjTjNbs2kDdkODg5BznWOqQ7cTw+PQc90D6ZP2FAKUDv + QbVCe0NBRAVEykWPRlNHF0fcSKBJZEopSu5Lskx3TT1OAU7GT4xQU1EYUd5SpVNsVDNU + +lXBVolXUVgZWOFZqlpyWztcBFzNXZZeYF8qX/RgvmGJYlNjHmPqZLZlgmZOZxpn52i0 + aYFqT2sca+psuG2GblRvIm/xcL9xjnJbcylz93TFdZN2YHctd/l4xXmRel17J3vxfLt9 + hX5NfxV/3YCkgWqCMIL1g7qEfoVChgWGx4eKiEuJDYnOio+LT4wPjM6Njo5Ojw2PzZCM + kUySC5LLk4qUSpUKlcuWjJdNmA6Y0JmTmlabGZvdnKGdZ54tnvSfu6CDoUyiFqLho6yk + eaVHpham5qe3qIqpXqo0qwur5Ky/rZyufK9fsEOxK7IWswWz+LTvteu27LfzuQG6Fbsw + vFO9fr6yv/HBOsKNw+zFWMbOyFXJ5suIzTnO99DE0qLUj9aL2Jfas9zb3xXhXeOx5hLo + ger47XvwB/Kf9TP30vp7/TL//wAAbmRpbgAAAAAAAAY2AACXkQAAWLgAAFVBAACMFQAA + KFcAABaoAABQDQAAVDkAAvCjAAK1wgABqPUAAwEAAAIAAAABAAUACgARABkAIwAvADsA + SQBZAGkAewCOAKIAuADPAOcBAAEaATUBUgFvAY4BrgHPAfECFQI5Al8ChQKtAtYDAAMs + A1gDhgO1A+QEFgRIBHwEsQTnBR4FVwWRBcwGCQZIBocGyAcLB08HlAfcCCQIbwi7CQkJ + WAmpCfwKUQqoCwELWwu3DBYMdgzZDT0NpA4MDncO4w9SD8MQNhCrESIRmxIWEpMTEhOT + FBYUmxUiFasWNRbCF1EX4RhzGQcZnBo0Gs0baBwFHKQdRB3mHoofMB/YIIEhLSHaIooj + OyPvJKUlXSYXJtQnkyhUKRkp3yqpK3UsRC0WLewuxC+fMH4xYDJGMy80HDUMNgA2+Dfz + OPI59Tr7PAY9FD4mPztAVUFyQpJDt0TfRgpHOUhsSaJK3EwZTVlOnU/lUS9SfVPPVSRW + fFfYWTdamVv/XWhe1WBEYbhjLmSnZiRnpWkoaq9sOG3Fb1Vw6XJ/dBh1tXdUePd6nXxG + ffF/oIFSgwiEwIZ8iDuJ/YvCjYuPV5EnkvqU0ZasmIqaa5xRnjqgJ6IXpAymBKgAqgCs + BK4LsBeyJrQ4tk64aLqEvKO+xMDnwwvFMMdWyXvLn83Bz+HR/dQX1i3YPtpK3FHeVOBS + 4krkPuYt6Bfp/uvg7b/vm/F180z1IPby+Mj6m/xr/jn//wAAAAIABQALABIAHAAmADIA + QABPAGAAcgCFAJoAsADHAOAA+gEVATIBTwFuAY8BsAHTAfcCHAJCAmoCkwK9AukDFQND + A3MDowPVBAgEPQRzBKoE4wUdBVkFlgXVBhUGVwabBuAHJwdvB7oIBghUCKQI9glKCaEJ + +QpTCrALDwtwC9MMOQyhDQwNeQ3oDloOzw9GD78QOxC6ETsRvxJFEs0TWBPlFHUVBhWa + FjEWyRdkGAAYnxk/GeIahxstG9YcgB0sHdoeih88H/AgpSFcIhYi0SOOJE0lDyXSJpgn + XygpKPUpxCqVK2gsPi0XLfIu0C+xMJUxfDJlM1I0QjU1Nis3JDggOSA6IzspPDM9QD5Q + P2RAe0GVQrND1ET4RiBHS0h6SaxK4UwaTVZOlU/YUR5SZ1O0VQRWV1etWQZaYlvBXSNe + h1/vYVlixmQ1ZadnG2iSagtrh20EboRwB3GLcxJ0m3Ymd7N5QnrTfGZ9/H+TgSuCxoRi + hgCHoIlAiuKMho4qj8+RdZMclMOWa5gUmb2bZp0PnrigYaIKo7OlXKcFqK2qVqv+raWv + TbD0spu0QrXpt4+5NrrdvIS+LL/UwX3DJ8TSxn/ILsney5HNR87/0LvSe9Q/1gfX1dmo + 24LdYt9K4TnjMOUv5zfpSutl7YrvufHx9DP2fvjN+yX9iP//AAAAAwAJABMAIAAwAEIA + VwBvAIkApgDFAOYBCgEwAVkBgwGwAd8CEQJFAnoCswLtAyoDaQOqA+4ENAR8BMcFFQVl + BbcGDQZlBr8HHQd+B+IISQizCSEJkgoGCn8K+wt7C/8Mhw0TDaQOOQ7SD3AQEhC4EWQS + ExLHE38UPBT9FcIWixdYGCkY/RnWGrEbkRxzHVkeQh8tIBwhDiICIvoj9CTwJfAm8if2 + KP0qBysULCMtNC5IL18weDGUMrIz0zT1Nhs3QzhtOZk6xzv4PSs+YD+XQNBCDENKRIpF + zUcSSFlJo0rvTD9NkU7mUD5RmVL4VFpVv1coWJVaBVt6XPJeb1/vYXRi/WSKZhtnsWlL + auhsim4wb9lxh3M4dOx2pHheehx73H2ff2WBLIL2hMGGjohciiyL/Y3Pj6KRdZNIlR2W + 8ZjFmpqcbp5BoBSh5qO3pYenVakhquuss653sDex9LOttWG3D7i4ulu7972NvxvAosIh + w5jFCMZwx9HJKsp6y8LNBM5Az3TQoNHH0unUAtUX1ifXMNg12TXaMNso3BrdCt303tzf + v+Ch4X7iWeMw5Abk1+Wo5nXnQugJ6NLplupa6xzr3Oyc7VjuFe7P74jwQfD48a/yZPMY + 88z0fvUx9eD2kPdB9/P4pflU+gT6s/tg/A78uv1k/g7+tf9a//8AAGRlc2MAAAAAAAAA + CkNvbG9yIExDRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABtbHVjAAAAAAAAABIA + AAAMbmJOTwAAABIAAADocHRQVAAAABYAAAD6c3ZTRQAAABAAAAEQZmlGSQAAABAAAAEg + ZGFESwAAABwAAAEwemhDTgAAAAwAAAFMZnJGUgAAABIAAAFYamFKUAAAAA4AAAFqZW5V + UwAAABIAAAF4cGxQTAAAABIAAAGKcHRCUgAAABgAAAGcZXNFUwAAABIAAAG0emhUVwAA + AA4AAAHGcnVSVQAAACQAAAHUa29LUgAAAAwAAAH4ZGVERQAAABAAAAIEbmxOTAAAABYA + AAIUaXRJVAAAABQAAAIqAEYAYQByAGcAZQAtAEwAQwBEAEwAQwBEACAAYQAgAEMAbwBy + AGUAcwBGAOQAcgBnAC0ATABDAEQAVgDkAHIAaQAtAEwAQwBEAEwAQwBEAC0AZgBhAHIA + dgBlAHMAawDmAHIAbV9pgnIAIABMAEMARADJAGMAcgBhAG4AIABMAEMARDCrMOkw/AAg + AEwAQwBEAEMAbwBsAG8AcgAgAEwAQwBEAEsAbwBsAG8AcgAgAEwAQwBEAEwAQwBEACAA + QwBvAGwAbwByAGkAZABvAEwAQwBEACAAYwBvAGwAbwByX2mCcm2yZnaYb3k6VmgEJgQy + BDUEQgQ9BD4EOQAgBBYEGgAtBDQEOARBBD8EOwQ1BDnO7LfsACAATABDAEQARgBhAHIA + YgAtAEwAQwBEAEsAbABlAHUAcgBlAG4ALQBMAEMARABMAEMARAAgAGMAbwBsAG8AcgBp + AABtbW9kAAAAAAAABhAAAJxfAAAAAMAdZYAAAAAAAAAAAAAAAAAAAAAAdGV4dAAAAABD + b3B5cmlnaHQgQXBwbGUsIEluYy4sIDIwMTAA + + ReadOnly + NO + RowAlign + 1 + RowSpacing + 36 + SheetTitle + Canvas 1 + SmartAlignmentGuidesActive + YES + SmartDistanceGuidesActive + YES + UniqueID + 1 + UseEntirePage + + VPages + 1 + WindowInfo + + CurrentSheet + 0 + ExpandedCanvases + + + name + Canvas 1 + + + Frame + {{285, 4}, {710, 774}} + ListView + + OutlineWidth + 142 + RightSidebar + + ShowRuler + + Sidebar + + SidebarWidth + 120 + VisibleRegion + {{15, 0}, {561, 605}} + Zoom + 1 + ZoomValues + + + Canvas 1 + 1 + 1 + + + + saveQuickLookFiles + YES + + diff --git a/report/pyp_clustering/np_plate.pdf b/report/pyp_clustering/np_plate.pdf new file mode 100644 index 00000000..81781b33 Binary files /dev/null and b/report/pyp_clustering/np_plate.pdf differ diff --git a/report/report.tex b/report/report.tex index 1fab4792..61de8941 100755 --- a/report/report.tex +++ b/report/report.tex @@ -92,7 +92,7 @@ We especially would like to thank Fred Jelinek for heading the Summer School eff \include{introduction} - +\include{np_clustering} \include{training} \bibliographystyle{apalike} diff --git a/report/training.tex b/report/training.tex index 96ee70b7..1f07db54 100644 --- a/report/training.tex +++ b/report/training.tex @@ -3,7 +3,10 @@ An integral part of constructing a state-of-the-art machine translation system is the training procedure. The goal of training is to optimize the model parameters to maximize translation quality on some metric, where the parameters are the weights associated with the features we use in our model, and the metric is BLEU. The most common approach to training is Minimum Error Rate Training (MERT), which tunes the parameters to minimize error according to an arbitrary error function. Thus, in our case this is equivalent to saying that it maximizes the 1-best translation under the BLEU metric. MERT is a log-linear model which allows us to combine different features in order to find the best target translation $e*$ for a input source $f$: -$$e* = \argmax_e p(e|f) = argmax_e \sum_{k=1}^K \w_k\h_k(e,f)$$ + +\begin{equation} +e^* = \arg \max_e p(e|f) = argmax_e \sum_{k=1}^K w_kh_k(e,f) +\end{equation} where $h_k(e,f)$ is a feature associated with the translation of $f$ to $e$, and $w$ is the weight associated with that feature. Unfortunately, MERT has been empirically unable to extend beyond optimization of a handful of features, thus necessecitating dense features. Theses features typically include: -- cgit v1.2.3