From b17c1e8d4295033ce1a721305d9ff89b3cf76d2a Mon Sep 17 00:00:00 2001 From: desaicwtf Date: Sun, 15 Aug 2010 13:46:30 +0000 Subject: git-svn-id: https://ws10smt.googlecode.com/svn/trunk@557 ec762483-ff6d-05da-a07a-a48fb63a330f --- report/pr-clustering/EMreverse.pdf | Bin 0 -> 10368 bytes report/pr-clustering/posterior.tex | 57 ++++++++++++++++++++++++++++++++++++- 2 files changed, 56 insertions(+), 1 deletion(-) create mode 100644 report/pr-clustering/EMreverse.pdf diff --git a/report/pr-clustering/EMreverse.pdf b/report/pr-clustering/EMreverse.pdf new file mode 100644 index 00000000..49298f00 Binary files /dev/null and b/report/pr-clustering/EMreverse.pdf differ diff --git a/report/pr-clustering/posterior.tex b/report/pr-clustering/posterior.tex index 734e53ed..73c15dba 100644 --- a/report/pr-clustering/posterior.tex +++ b/report/pr-clustering/posterior.tex @@ -20,7 +20,7 @@ category and then that category generates the contex for the phrase. \begin{figure}[h] \centering - \includegraphics[width=3.5in]{pr-clustering/EMdigram} + \includegraphics[width=3.0in]{pr-clustering/EMdigram} \caption{Basic Phrase Clustering Model} \label{fig:EM} \end{figure} @@ -136,3 +136,58 @@ The $q$ distribution we are looking for is then q_i(z)\propto P_{\theta}(z|\textbf{p},\textbf{c}_i) \exp(\lambda_{\textbf{p}iz}). \] +M-step can be performed as usual. +\section{Agreement Models} +Another type of constraint we used is agreement between +different models. We came up with a similar generative +model in the reverse direction to agree with +as shown in Figure \ref{fig:EMreverse}. We also +took advantage of bi-text data we have and make models +learning from different languages agree with each other. + +\begin{figure}[h] + \centering + \includegraphics[width=3.0in]{pr-clustering/EMreverse} + \caption{EM with posterior regularization} + \label{fig:EMreverse} +\end{figure} + +In the reversed model, +the posterior probability of the labelling of +a context $\textbf{c}$ with +phrase $\textbf{p}$ is +\[ +P(z|\textbf{c},\textbf{p})\propto +P(z|\textbf{c})P(\textbf{p}|z). +\] +Since a phrase contains a variable number of words, +we only look at the first and last word of +a phrase. That is $P(\textbf{p}|z)=P_1(p_1|z)P_n(p_n|z)$, +where $n$ is the length of $\textbf{p}$, $P_1$ and $P_n$ +denotes distributions for words in the first and last position +of a phrase given a category. + +The implementation of agreement models again ends up making +a small change to E-step. The $q$ distribution for +a phrase $\textbf{p}$ and a context $\textbf{c}$ +is given by +\[ +q(z)=\sqrt{P_{\theta 1} +(z|\textbf{p},\textbf{c})P_{\theta 2}(z|\textbf{p},\textbf{c})}, +\] +where $P_{\theta 1}$ and $P_{\theta 2}$ are +posterior distributions for two models. +In M-step, both models should update their parameters with the +same $q$ distribution computed as above. +This modified EM maximizes the objective: +\[ +\mathcal{L}_1+ +\mathcal{L}_2+ +\sum_{\textbf{p},\textbf{c}} +\log\sum_z\sqrt{P_{\theta 1}(z|\textbf{p},\textbf{c}) +P_{\theta 2}(z|\textbf{p},\textbf{c})}, +\] +where $\mathcal{L}_1$ and $\mathcal{L}_2$ +are log-likelihood of +two models. +\section{Experiments} -- cgit v1.2.3