diff options
author | Patrick Simianer <p@simianer.de> | 2011-10-20 02:31:25 +0200 |
---|---|---|
committer | Patrick Simianer <p@simianer.de> | 2011-10-20 02:31:25 +0200 |
commit | a5a92ebe23c5819ed104313426012011e32539da (patch) | |
tree | 3416818c758d5ece4e71fe522c571e75ea04f100 /utils/ccrp_nt.h | |
parent | b88332caac2cbe737c99b8098813f868ca876d8b (diff) | |
parent | 78baccbb4231bb84a456702d4f574f8e601a8182 (diff) |
finalized merge
Diffstat (limited to 'utils/ccrp_nt.h')
-rw-r--r-- | utils/ccrp_nt.h | 169 |
1 files changed, 169 insertions, 0 deletions
diff --git a/utils/ccrp_nt.h b/utils/ccrp_nt.h new file mode 100644 index 00000000..63b6f4c2 --- /dev/null +++ b/utils/ccrp_nt.h @@ -0,0 +1,169 @@ +#ifndef _CCRP_NT_H_ +#define _CCRP_NT_H_ + +#include <numeric> +#include <cassert> +#include <cmath> +#include <list> +#include <iostream> +#include <vector> +#include <tr1/unordered_map> +#include <boost/functional/hash.hpp> +#include "sampler.h" +#include "slice_sampler.h" + +// Chinese restaurant process (1 parameter) +template <typename Dish, typename DishHash = boost::hash<Dish> > +class CCRP_NoTable { + public: + explicit CCRP_NoTable(double conc) : + num_customers_(), + concentration_(conc), + concentration_prior_shape_(std::numeric_limits<double>::quiet_NaN()), + concentration_prior_rate_(std::numeric_limits<double>::quiet_NaN()) {} + + CCRP_NoTable(double c_shape, double c_rate, double c = 10.0) : + num_customers_(), + concentration_(c), + concentration_prior_shape_(c_shape), + concentration_prior_rate_(c_rate) {} + + double concentration() const { return concentration_; } + + bool has_concentration_prior() const { + return !std::isnan(concentration_prior_shape_); + } + + void clear() { + num_customers_ = 0; + custs_.clear(); + } + + unsigned num_customers() const { + return num_customers_; + } + + unsigned num_customers(const Dish& dish) const { + const typename std::tr1::unordered_map<Dish, unsigned, DishHash>::const_iterator it = custs_.find(dish); + if (it == custs_.end()) return 0; + return it->second; + } + + int increment(const Dish& dish) { + int table_diff = 0; + if (++custs_[dish] == 1) + table_diff = 1; + ++num_customers_; + return table_diff; + } + + int decrement(const Dish& dish) { + int table_diff = 0; + int nc = --custs_[dish]; + if (nc == 0) { + custs_.erase(dish); + table_diff = -1; + } else if (nc < 0) { + std::cerr << "Dish counts dropped below zero for: " << dish << std::endl; + abort(); + } + --num_customers_; + return table_diff; + } + + double prob(const Dish& dish, const double& p0) const { + const unsigned at_table = num_customers(dish); + return (at_table + p0 * concentration_) / (num_customers_ + concentration_); + } + + double logprob(const Dish& dish, const double& logp0) const { + const unsigned at_table = num_customers(dish); + return log(at_table + exp(logp0 + log(concentration_))) - log(num_customers_ + concentration_); + } + + double log_crp_prob() const { + return log_crp_prob(concentration_); + } + + static double log_gamma_density(const double& x, const double& shape, const double& rate) { + assert(x >= 0.0); + assert(shape > 0.0); + assert(rate > 0.0); + const double lp = (shape-1)*log(x) - shape*log(rate) - x/rate - lgamma(shape); + return lp; + } + + // taken from http://en.wikipedia.org/wiki/Chinese_restaurant_process + // does not include P_0's + double log_crp_prob(const double& concentration) const { + double lp = 0.0; + if (has_concentration_prior()) + lp += log_gamma_density(concentration, concentration_prior_shape_, concentration_prior_rate_); + assert(lp <= 0.0); + if (num_customers_) { + lp += lgamma(concentration) - lgamma(concentration + num_customers_) + + custs_.size() * log(concentration); + assert(std::isfinite(lp)); + for (typename std::tr1::unordered_map<Dish, unsigned, DishHash>::const_iterator it = custs_.begin(); + it != custs_.end(); ++it) { + lp += lgamma(it->second); + } + } + assert(std::isfinite(lp)); + return lp; + } + + void resample_hyperparameters(MT19937* rng, const unsigned nloop = 5, const unsigned niterations = 10) { + assert(has_concentration_prior()); + ConcentrationResampler cr(*this); + for (int iter = 0; iter < nloop; ++iter) { + concentration_ = slice_sampler1d(cr, concentration_, *rng, 0.0, + std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations); + } + } + + struct ConcentrationResampler { + ConcentrationResampler(const CCRP_NoTable& crp) : crp_(crp) {} + const CCRP_NoTable& crp_; + double operator()(const double& proposed_concentration) const { + return crp_.log_crp_prob(proposed_concentration); + } + }; + + void Print(std::ostream* out) const { + (*out) << "DP(alpha=" << concentration_ << ") customers=" << num_customers_ << std::endl; + int cc = 0; + for (typename std::tr1::unordered_map<Dish, unsigned, DishHash>::const_iterator it = custs_.begin(); + it != custs_.end(); ++it) { + (*out) << " " << it->first << "(" << it->second << " eating)"; + ++cc; + if (cc > 10) { (*out) << " ..."; break; } + } + (*out) << std::endl; + } + + unsigned num_customers_; + std::tr1::unordered_map<Dish, unsigned, DishHash> custs_; + + typedef typename std::tr1::unordered_map<Dish, unsigned, DishHash>::const_iterator const_iterator; + const_iterator begin() const { + return custs_.begin(); + } + const_iterator end() const { + return custs_.end(); + } + + double concentration_; + + // optional gamma prior on concentration_ (NaN if no prior) + double concentration_prior_shape_; + double concentration_prior_rate_; +}; + +template <typename T,typename H> +std::ostream& operator<<(std::ostream& o, const CCRP_NoTable<T,H>& c) { + c.Print(&o); + return o; +} + +#endif |