#ifndef SAMPLER_H_ #define SAMPLER_H_ #include <algorithm> #include <functional> #include <numeric> #include <iostream> #include <fstream> #include <vector> #include <ctime> #include <boost/random/mersenne_twister.hpp> #include <boost/random/uniform_real.hpp> #include <boost/random/variate_generator.hpp> #include <boost/random/normal_distribution.hpp> #include <boost/random/poisson_distribution.hpp> #include <boost/random/uniform_int.hpp> #include "prob.h" template <typename F> struct SampleSet; template <typename RNG> struct RandomNumberGenerator { static uint32_t GetTrulyRandomSeed() { uint32_t seed; std::ifstream r("/dev/urandom"); if (r) { r.read((char*)&seed,sizeof(uint32_t)); } if (r.fail() || !r) { std::cerr << "Warning: could not read from /dev/urandom. Seeding from clock" << std::endl; seed = std::time(NULL); } std::cerr << "Seeding random number sequence to " << seed << std::endl; return seed; } RandomNumberGenerator() : m_dist(0,1), m_generator(), m_random(m_generator,m_dist) { uint32_t seed = GetTrulyRandomSeed(); m_generator.seed(seed); } explicit RandomNumberGenerator(uint32_t seed) : m_dist(0,1), m_generator(), m_random(m_generator,m_dist) { if (!seed) seed = GetTrulyRandomSeed(); m_generator.seed(seed); } template <typename F> size_t SelectSample(const F& a, const F& b, double T = 1.0) { if (T == 1.0) { if (F(this->next()) > (a / (a + b))) return 1; else return 0; } else { assert(!"not implemented"); } } // T is the annealing temperature, if desired template <typename F> size_t SelectSample(const SampleSet<F>& ss, double T = 1.0); // draw a value from U(0,1) double next() {return m_random();} // draw a value from U(0,1) double operator()() { return m_random(); } // draw a value from N(mean,var) double NextNormal(double mean, double var) { return boost::normal_distribution<double>(mean, var)(m_random); } // draw a value from a Poisson distribution // lambda must be greater than 0 int NextPoisson(int lambda) { return boost::poisson_distribution<int>(lambda)(m_random); } bool AcceptMetropolisHastings(const prob_t& p_cur, const prob_t& p_prev, const prob_t& q_cur, const prob_t& q_prev) { const prob_t a = (p_cur / p_prev) * (q_prev / q_cur); if (log(a) >= 0.0) return true; return (prob_t(this->next()) < a); } RNG &gen() { return m_generator; } typedef boost::variate_generator<RNG&, boost::uniform_int<> > IntRNG; IntRNG inclusive(int low,int high_incl) { assert(high_incl>=low); return IntRNG(m_generator,boost::uniform_int<>(low,high_incl)); } private: boost::uniform_real<> m_dist; RNG m_generator; boost::variate_generator<RNG&, boost::uniform_real<> > m_random; }; typedef RandomNumberGenerator<boost::mt19937> MT19937; template <typename F = double> class SampleSet { public: const F& operator[](int i) const { return m_scores[i]; } F& operator[](int i) { return m_scores[i]; } bool empty() const { return m_scores.empty(); } void add(const F& s) { m_scores.push_back(s); } void clear() { m_scores.clear(); } size_t size() const { return m_scores.size(); } void resize(int size) { m_scores.resize(size); } std::vector<F> m_scores; }; template <typename RNG> template <typename F> size_t RandomNumberGenerator<RNG>::SelectSample(const SampleSet<F>& ss, double T) { assert(T > 0.0); assert(ss.m_scores.size() > 0); if (ss.m_scores.size() == 1) return 0; const double annealing_factor = 1.0 / T; const bool anneal = (T != 1.0); F sum = F(0); if (anneal) { for (int i = 0; i < ss.m_scores.size(); ++i) sum += pow(ss.m_scores[i], annealing_factor); // p^(1/T) } else { sum = std::accumulate(ss.m_scores.begin(), ss.m_scores.end(), F(0)); } //for (size_t i = 0; i < ss.m_scores.size(); ++i) std::cerr << ss.m_scores[i] << ","; //std::cerr << std::endl; F random(this->next()); // random number between 0 and 1 random *= sum; // scale with normalization factor //std::cerr << "Random number " << random << std::endl; //now figure out which sample size_t position = 1; sum = ss.m_scores[0]; if (anneal) { sum = pow(sum, annealing_factor); for (; position < ss.m_scores.size() && sum < random; ++position) sum += pow(ss.m_scores[position], annealing_factor); } else { for (; position < ss.m_scores.size() && sum < random; ++position) sum += ss.m_scores[position]; } //std::cout << "random: " << random << " sample: " << position << std::endl; //std::cerr << "Sample: " << position-1 << std::endl; //exit(1); return position-1; } #endif