#include "risk.h" #include "prob.h" #include "candidate_set.h" #include "ns.h" using namespace std; namespace training { // g = \sum_e p(e|f) * loss(e) * (phi(e,f) - E[phi(e,f)]) double CandidateSetRisk::operator()(const vector<double>& params, SparseVector<double>* g) const { prob_t z; for (unsigned i = 0; i < cands_.size(); ++i) { const prob_t u(cands_[i].fmap.dot(params), init_lnx()); z += u; } const double log_z = log(z); SparseVector<double> exp_feats; if (g) { for (unsigned i = 0; i < cands_.size(); ++i) { const double log_prob = cands_[i].fmap.dot(params) - log_z; const double prob = exp(log_prob); exp_feats += cands_[i].fmap * prob; } } double risk = 0; for (unsigned i = 0; i < cands_.size(); ++i) { const double log_prob = cands_[i].fmap.dot(params) - log_z; const double prob = exp(log_prob); const double cost = metric_.IsErrorMetric() ? metric_.ComputeScore(cands_[i].eval_feats) : 1.0 - metric_.ComputeScore(cands_[i].eval_feats); const double r = prob * cost; risk += r; if (g) (*g) += (cands_[i].fmap - exp_feats) * r; } return risk; } }