#ifndef SCITBX_LBFGS_H #define SCITBX_LBFGS_H #include #include #include #include #include #include #include #include #include namespace scitbx { //! Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) %minimizer. /*! Implementation of the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm for large-scale multidimensional minimization problems. This code was manually derived from Java code which was in turn derived from the Fortran program lbfgs.f. The Java translation was effected mostly mechanically, with some manual clean-up; in particular, array indices start at 0 instead of 1. Most of the comments from the Fortran code have been pasted in. Information on the original LBFGS Fortran source code is available at http://www.netlib.org/opt/lbfgs_um.shar . The following information is taken verbatim from the Netlib documentation for the Fortran source.
    file    opt/lbfgs_um.shar
    for     unconstrained optimization problems
    alg     limited memory BFGS method
    by      J. Nocedal
    contact nocedal@eecs.nwu.edu
    ref     D. C. Liu and J. Nocedal, ``On the limited memory BFGS method for
    ,       large scale optimization methods'' Mathematical Programming 45
    ,       (1989), pp. 503-528.
    ,       (Postscript file of this paper is available via anonymous ftp
    ,       to eecs.nwu.edu in the directory pub/%lbfgs/lbfgs_um.)
    
@author Jorge Nocedal: original Fortran version, including comments (July 1990).
Robert Dodier: Java translation, August 1997.
Ralf W. Grosse-Kunstleve: C++ port, March 2002.
Chris Dyer: serialize/deserialize functionality */ namespace lbfgs { //! Generic exception class for %lbfgs %error messages. /*! All exceptions thrown by the minimizer are derived from this class. */ class error : public std::exception { public: //! Constructor. error(std::string const& msg) throw() : msg_("lbfgs error: " + msg) {} //! Access to error message. virtual const char* what() const throw() { return msg_.c_str(); } protected: virtual ~error() throw() {} std::string msg_; public: static std::string itoa(unsigned long i) { std::ostringstream os; os << i; return os.str(); } }; //! Specific exception class. class error_internal_error : public error { public: //! Constructor. error_internal_error(const char* file, unsigned long line) throw() : error( "Internal Error: " + std::string(file) + "(" + itoa(line) + ")") {} }; //! Specific exception class. class error_improper_input_parameter : public error { public: //! Constructor. error_improper_input_parameter(std::string const& msg) throw() : error("Improper input parameter: " + msg) {} }; //! Specific exception class. class error_improper_input_data : public error { public: //! Constructor. error_improper_input_data(std::string const& msg) throw() : error("Improper input data: " + msg) {} }; //! Specific exception class. class error_search_direction_not_descent : public error { public: //! Constructor. error_search_direction_not_descent() throw() : error("The search direction is not a descent direction.") {} }; //! Specific exception class. class error_line_search_failed : public error { public: //! Constructor. error_line_search_failed(std::string const& msg) throw() : error("Line search failed: " + msg) {} }; //! Specific exception class. class error_line_search_failed_rounding_errors : public error_line_search_failed { public: //! Constructor. error_line_search_failed_rounding_errors(std::string const& msg) throw() : error_line_search_failed(msg) {} }; namespace detail { template inline NumType pow2(NumType const& x) { return x * x; } template inline NumType abs(NumType const& x) { if (x < NumType(0)) return -x; return x; } // This class implements an algorithm for multi-dimensional line search. template class mcsrch { protected: int infoc; FloatType dginit; bool brackt; bool stage1; FloatType finit; FloatType dgtest; FloatType width; FloatType width1; FloatType stx; FloatType fx; FloatType dgx; FloatType sty; FloatType fy; FloatType dgy; FloatType stmin; FloatType stmax; static FloatType const& max3( FloatType const& x, FloatType const& y, FloatType const& z) { return x < y ? (y < z ? z : y ) : (x < z ? z : x ); } public: /* Minimize a function along a search direction. This code is a Java translation of the function MCSRCH from lbfgs.f, which in turn is a slight modification of the subroutine CSRCH of More' and Thuente. The changes are to allow reverse communication, and do not affect the performance of the routine. This function, in turn, calls mcstep.

The Java translation was effected mostly mechanically, with some manual clean-up; in particular, array indices start at 0 instead of 1. Most of the comments from the Fortran code have been pasted in here as well.

The purpose of mcsrch is to find a step which satisfies a sufficient decrease condition and a curvature condition.

At each stage this function updates an interval of uncertainty with endpoints stx and sty. The interval of uncertainty is initially chosen so that it contains a minimizer of the modified function

                f(x+stp*s) - f(x) - ftol*stp*(gradf(x)'s).
           
If a step is obtained for which the modified function has a nonpositive function value and nonnegative derivative, then the interval of uncertainty is chosen so that it contains a minimizer of f(x+stp*s).

The algorithm is designed to find a step which satisfies the sufficient decrease condition

                 f(x+stp*s) <= f(X) + ftol*stp*(gradf(x)'s),
           
and the curvature condition
                 abs(gradf(x+stp*s)'s)) <= gtol*abs(gradf(x)'s).
           
If ftol is less than gtol and if, for example, the function is bounded below, then there is always a step which satisfies both conditions. If no step can be found which satisfies both conditions, then the algorithm usually stops when rounding errors prevent further progress. In this case stp only satisfies the sufficient decrease condition.

@author Original Fortran version by Jorge J. More' and David J. Thuente as part of the Minpack project, June 1983, Argonne National Laboratory. Java translation by Robert Dodier, August 1997. @param n The number of variables. @param x On entry this contains the base point for the line search. On exit it contains x + stp*s. @param f On entry this contains the value of the objective function at x. On exit it contains the value of the objective function at x + stp*s. @param g On entry this contains the gradient of the objective function at x. On exit it contains the gradient at x + stp*s. @param s The search direction. @param stp On entry this contains an initial estimate of a satifactory step length. On exit stp contains the final estimate. @param ftol Tolerance for the sufficient decrease condition. @param xtol Termination occurs when the relative width of the interval of uncertainty is at most xtol. @param maxfev Termination occurs when the number of evaluations of the objective function is at least maxfev by the end of an iteration. @param info This is an output variable, which can have these values:

  • info = -1 A return is made to compute the function and gradient.
  • info = 1 The sufficient decrease condition and the directional derivative condition hold.
@param nfev On exit, this is set to the number of function evaluations. @param wa Temporary storage array, of length n. */ void run( FloatType const& gtol, FloatType const& stpmin, FloatType const& stpmax, SizeType n, FloatType* x, FloatType f, const FloatType* g, FloatType* s, SizeType is0, FloatType& stp, FloatType ftol, FloatType xtol, SizeType maxfev, int& info, SizeType& nfev, FloatType* wa); /* The purpose of this function is to compute a safeguarded step for a linesearch and to update an interval of uncertainty for a minimizer of the function.

The parameter stx contains the step with the least function value. The parameter stp contains the current step. It is assumed that the derivative at stx is negative in the direction of the step. If brackt is true when mcstep returns then a minimizer has been bracketed in an interval of uncertainty with endpoints stx and sty.

Variables that must be modified by mcstep are implemented as 1-element arrays. @param stx Step at the best step obtained so far. This variable is modified by mcstep. @param fx Function value at the best step obtained so far. This variable is modified by mcstep. @param dx Derivative at the best step obtained so far. The derivative must be negative in the direction of the step, that is, dx and stp-stx must have opposite signs. This variable is modified by mcstep. @param sty Step at the other endpoint of the interval of uncertainty. This variable is modified by mcstep. @param fy Function value at the other endpoint of the interval of uncertainty. This variable is modified by mcstep. @param dy Derivative at the other endpoint of the interval of uncertainty. This variable is modified by mcstep. @param stp Step at the current step. If brackt is set then on input stp must be between stx and sty. On output stp is set to the new step. @param fp Function value at the current step. @param dp Derivative at the current step. @param brackt Tells whether a minimizer has been bracketed. If the minimizer has not been bracketed, then on input this variable must be set false. If the minimizer has been bracketed, then on output this variable is true. @param stpmin Lower bound for the step. @param stpmax Upper bound for the step. If the return value is 1, 2, 3, or 4, then the step has been computed successfully. A return value of 0 indicates improper input parameters. @author Jorge J. More, David J. Thuente: original Fortran version, as part of Minpack project. Argonne Nat'l Laboratory, June 1983. Robert Dodier: Java translation, August 1997. */ static int mcstep( FloatType& stx, FloatType& fx, FloatType& dx, FloatType& sty, FloatType& fy, FloatType& dy, FloatType& stp, FloatType fp, FloatType dp, bool& brackt, FloatType stpmin, FloatType stpmax); void serialize(std::ostream* out) const { out->write((const char*)&infoc,sizeof(infoc)); out->write((const char*)&dginit,sizeof(dginit)); out->write((const char*)&brackt,sizeof(brackt)); out->write((const char*)&stage1,sizeof(stage1)); out->write((const char*)&finit,sizeof(finit)); out->write((const char*)&dgtest,sizeof(dgtest)); out->write((const char*)&width,sizeof(width)); out->write((const char*)&width1,sizeof(width1)); out->write((const char*)&stx,sizeof(stx)); out->write((const char*)&fx,sizeof(fx)); out->write((const char*)&dgx,sizeof(dgx)); out->write((const char*)&sty,sizeof(sty)); out->write((const char*)&fy,sizeof(fy)); out->write((const char*)&dgy,sizeof(dgy)); out->write((const char*)&stmin,sizeof(stmin)); out->write((const char*)&stmax,sizeof(stmax)); } void deserialize(std::istream* in) const { in->read((char*)&infoc, sizeof(infoc)); in->read((char*)&dginit, sizeof(dginit)); in->read((char*)&brackt, sizeof(brackt)); in->read((char*)&stage1, sizeof(stage1)); in->read((char*)&finit, sizeof(finit)); in->read((char*)&dgtest, sizeof(dgtest)); in->read((char*)&width, sizeof(width)); in->read((char*)&width1, sizeof(width1)); in->read((char*)&stx, sizeof(stx)); in->read((char*)&fx, sizeof(fx)); in->read((char*)&dgx, sizeof(dgx)); in->read((char*)&sty, sizeof(sty)); in->read((char*)&fy, sizeof(fy)); in->read((char*)&dgy, sizeof(dgy)); in->read((char*)&stmin, sizeof(stmin)); in->read((char*)&stmax, sizeof(stmax)); } }; template void mcsrch::run( FloatType const& gtol, FloatType const& stpmin, FloatType const& stpmax, SizeType n, FloatType* x, FloatType f, const FloatType* g, FloatType* s, SizeType is0, FloatType& stp, FloatType ftol, FloatType xtol, SizeType maxfev, int& info, SizeType& nfev, FloatType* wa) { if (info != -1) { infoc = 1; if ( n == 0 || maxfev == 0 || gtol < FloatType(0) || xtol < FloatType(0) || stpmin < FloatType(0) || stpmax < stpmin) { throw error_internal_error(__FILE__, __LINE__); } if (stp <= FloatType(0) || ftol < FloatType(0)) { throw error_internal_error(__FILE__, __LINE__); } // Compute the initial gradient in the search direction // and check that s is a descent direction. dginit = FloatType(0); for (SizeType j = 0; j < n; j++) { dginit += g[j] * s[is0+j]; } if (dginit >= FloatType(0)) { throw error_search_direction_not_descent(); } brackt = false; stage1 = true; nfev = 0; finit = f; dgtest = ftol*dginit; width = stpmax - stpmin; width1 = FloatType(2) * width; std::copy(x, x+n, wa); // The variables stx, fx, dgx contain the values of the step, // function, and directional derivative at the best step. // The variables sty, fy, dgy contain the value of the step, // function, and derivative at the other endpoint of // the interval of uncertainty. // The variables stp, f, dg contain the values of the step, // function, and derivative at the current step. stx = FloatType(0); fx = finit; dgx = dginit; sty = FloatType(0); fy = finit; dgy = dginit; } for (;;) { if (info != -1) { // Set the minimum and maximum steps to correspond // to the present interval of uncertainty. if (brackt) { stmin = std::min(stx, sty); stmax = std::max(stx, sty); } else { stmin = stx; stmax = stp + FloatType(4) * (stp - stx); } // Force the step to be within the bounds stpmax and stpmin. stp = std::max(stp, stpmin); stp = std::min(stp, stpmax); // If an unusual termination is to occur then let // stp be the lowest point obtained so far. if ( (brackt && (stp <= stmin || stp >= stmax)) || nfev >= maxfev - 1 || infoc == 0 || (brackt && stmax - stmin <= xtol * stmax)) { stp = stx; } // Evaluate the function and gradient at stp // and compute the directional derivative. // We return to main program to obtain F and G. for (SizeType j = 0; j < n; j++) { x[j] = wa[j] + stp * s[is0+j]; } info=-1; break; } info = 0; nfev++; FloatType dg(0); for (SizeType j = 0; j < n; j++) { dg += g[j] * s[is0+j]; } FloatType ftest1 = finit + stp*dgtest; // Test for convergence. if ((brackt && (stp <= stmin || stp >= stmax)) || infoc == 0) { throw error_line_search_failed_rounding_errors( "Rounding errors prevent further progress." " There may not be a step which satisfies the" " sufficient decrease and curvature conditions." " Tolerances may be too small."); } if (stp == stpmax && f <= ftest1 && dg <= dgtest) { throw error_line_search_failed( "The step is at the upper bound stpmax()."); } if (stp == stpmin && (f > ftest1 || dg >= dgtest)) { throw error_line_search_failed( "The step is at the lower bound stpmin()."); } if (nfev >= maxfev) { throw error_line_search_failed( "Number of function evaluations has reached maxfev()."); } if (brackt && stmax - stmin <= xtol * stmax) { throw error_line_search_failed( "Relative width of the interval of uncertainty" " is at most xtol()."); } // Check for termination. if (f <= ftest1 && abs(dg) <= gtol * (-dginit)) { info = 1; break; } // In the first stage we seek a step for which the modified // function has a nonpositive value and nonnegative derivative. if ( stage1 && f <= ftest1 && dg >= std::min(ftol, gtol) * dginit) { stage1 = false; } // A modified function is used to predict the step only if // we have not obtained a step for which the modified // function has a nonpositive function value and nonnegative // derivative, and if a lower function value has been // obtained but the decrease is not sufficient. if (stage1 && f <= fx && f > ftest1) { // Define the modified function and derivative values. FloatType fm = f - stp*dgtest; FloatType fxm = fx - stx*dgtest; FloatType fym = fy - sty*dgtest; FloatType dgm = dg - dgtest; FloatType dgxm = dgx - dgtest; FloatType dgym = dgy - dgtest; // Call cstep to update the interval of uncertainty // and to compute the new step. infoc = mcstep(stx, fxm, dgxm, sty, fym, dgym, stp, fm, dgm, brackt, stmin, stmax); // Reset the function and gradient values for f. fx = fxm + stx*dgtest; fy = fym + sty*dgtest; dgx = dgxm + dgtest; dgy = dgym + dgtest; } else { // Call mcstep to update the interval of uncertainty // and to compute the new step. infoc = mcstep(stx, fx, dgx, sty, fy, dgy, stp, f, dg, brackt, stmin, stmax); } // Force a sufficient decrease in the size of the // interval of uncertainty. if (brackt) { if (abs(sty - stx) >= FloatType(0.66) * width1) { stp = stx + FloatType(0.5) * (sty - stx); } width1 = width; width = abs(sty - stx); } } } template int mcsrch::mcstep( FloatType& stx, FloatType& fx, FloatType& dx, FloatType& sty, FloatType& fy, FloatType& dy, FloatType& stp, FloatType fp, FloatType dp, bool& brackt, FloatType stpmin, FloatType stpmax) { bool bound; FloatType gamma, p, q, r, s, sgnd, stpc, stpf, stpq, theta; int info = 0; if ( ( brackt && (stp <= std::min(stx, sty) || stp >= std::max(stx, sty))) || dx * (stp - stx) >= FloatType(0) || stpmax < stpmin) { return 0; } // Determine if the derivatives have opposite sign. sgnd = dp * (dx / abs(dx)); if (fp > fx) { // First case. A higher function value. // The minimum is bracketed. If the cubic step is closer // to stx than the quadratic step, the cubic step is taken, // else the average of the cubic and quadratic steps is taken. info = 1; bound = true; theta = FloatType(3) * (fx - fp) / (stp - stx) + dx + dp; s = max3(abs(theta), abs(dx), abs(dp)); gamma = s * std::sqrt(pow2(theta / s) - (dx / s) * (dp / s)); if (stp < stx) gamma = - gamma; p = (gamma - dx) + theta; q = ((gamma - dx) + gamma) + dp; r = p/q; stpc = stx + r * (stp - stx); stpq = stx + ((dx / ((fx - fp) / (stp - stx) + dx)) / FloatType(2)) * (stp - stx); if (abs(stpc - stx) < abs(stpq - stx)) { stpf = stpc; } else { stpf = stpc + (stpq - stpc) / FloatType(2); } brackt = true; } else if (sgnd < FloatType(0)) { // Second case. A lower function value and derivatives of // opposite sign. The minimum is bracketed. If the cubic // step is closer to stx than the quadratic (secant) step, // the cubic step is taken, else the quadratic step is taken. info = 2; bound = false; theta = FloatType(3) * (fx - fp) / (stp - stx) + dx + dp; s = max3(abs(theta), abs(dx), abs(dp)); gamma = s * std::sqrt(pow2(theta / s) - (dx / s) * (dp / s)); if (stp > stx) gamma = - gamma; p = (gamma - dp) + theta; q = ((gamma - dp) + gamma) + dx; r = p/q; stpc = stp + r * (stx - stp); stpq = stp + (dp / (dp - dx)) * (stx - stp); if (abs(stpc - stp) > abs(stpq - stp)) { stpf = stpc; } else { stpf = stpq; } brackt = true; } else if (abs(dp) < abs(dx)) { // Third case. A lower function value, derivatives of the // same sign, and the magnitude of the derivative decreases. // The cubic step is only used if the cubic tends to infinity // in the direction of the step or if the minimum of the cubic // is beyond stp. Otherwise the cubic step is defined to be // either stpmin or stpmax. The quadratic (secant) step is also // computed and if the minimum is bracketed then the the step // closest to stx is taken, else the step farthest away is taken. info = 3; bound = true; theta = FloatType(3) * (fx - fp) / (stp - stx) + dx + dp; s = max3(abs(theta), abs(dx), abs(dp)); gamma = s * std::sqrt( std::max(FloatType(0), pow2(theta / s) - (dx / s) * (dp / s))); if (stp > stx) gamma = -gamma; p = (gamma - dp) + theta; q = (gamma + (dx - dp)) + gamma; r = p/q; if (r < FloatType(0) && gamma != FloatType(0)) { stpc = stp + r * (stx - stp); } else if (stp > stx) { stpc = stpmax; } else { stpc = stpmin; } stpq = stp + (dp / (dp - dx)) * (stx - stp); if (brackt) { if (abs(stp - stpc) < abs(stp - stpq)) { stpf = stpc; } else { stpf = stpq; } } else { if (abs(stp - stpc) > abs(stp - stpq)) { stpf = stpc; } else { stpf = stpq; } } } else { // Fourth case. A lower function value, derivatives of the // same sign, and the magnitude of the derivative does // not decrease. If the minimum is not bracketed, the step // is either stpmin or stpmax, else the cubic step is taken. info = 4; bound = false; if (brackt) { theta = FloatType(3) * (fp - fy) / (sty - stp) + dy + dp; s = max3(abs(theta), abs(dy), abs(dp)); gamma = s * std::sqrt(pow2(theta / s) - (dy / s) * (dp / s)); if (stp > sty) gamma = -gamma; p = (gamma - dp) + theta; q = ((gamma - dp) + gamma) + dy; r = p/q; stpc = stp + r * (sty - stp); stpf = stpc; } else if (stp > stx) { stpf = stpmax; } else { stpf = stpmin; } } // Update the interval of uncertainty. This update does not // depend on the new step or the case analysis above. if (fp > fx) { sty = stp; fy = fp; dy = dp; } else { if (sgnd < FloatType(0)) { sty = stx; fy = fx; dy = dx; } stx = stp; fx = fp; dx = dp; } // Compute the new step and safeguard it. stpf = std::min(stpmax, stpf); stpf = std::max(stpmin, stpf); stp = stpf; if (brackt && bound) { if (sty > stx) { stp = std::min(stx + FloatType(0.66) * (sty - stx), stp); } else { stp = std::max(stx + FloatType(0.66) * (sty - stx), stp); } } return info; } /* Compute the sum of a vector times a scalar plus another vector. Adapted from the subroutine daxpy in lbfgs.f. */ template void daxpy( SizeType n, FloatType da, const FloatType* dx, SizeType ix0, SizeType incx, FloatType* dy, SizeType iy0, SizeType incy) { SizeType i, ix, iy, m; if (n == 0) return; if (da == FloatType(0)) return; if (!(incx == 1 && incy == 1)) { ix = 0; iy = 0; for (i = 0; i < n; i++) { dy[iy0+iy] += da * dx[ix0+ix]; ix += incx; iy += incy; } return; } m = n % 4; for (i = 0; i < m; i++) { dy[iy0+i] += da * dx[ix0+i]; } for (; i < n;) { dy[iy0+i] += da * dx[ix0+i]; i++; dy[iy0+i] += da * dx[ix0+i]; i++; dy[iy0+i] += da * dx[ix0+i]; i++; dy[iy0+i] += da * dx[ix0+i]; i++; } } template inline void daxpy( SizeType n, FloatType da, const FloatType* dx, SizeType ix0, FloatType* dy) { daxpy(n, da, dx, ix0, SizeType(1), dy, SizeType(0), SizeType(1)); } /* Compute the dot product of two vectors. Adapted from the subroutine ddot in lbfgs.f. */ template FloatType ddot( SizeType n, const FloatType* dx, SizeType ix0, SizeType incx, const FloatType* dy, SizeType iy0, SizeType incy) { SizeType i, ix, iy, m; FloatType dtemp(0); if (n == 0) return FloatType(0); if (!(incx == 1 && incy == 1)) { ix = 0; iy = 0; for (i = 0; i < n; i++) { dtemp += dx[ix0+ix] * dy[iy0+iy]; ix += incx; iy += incy; } return dtemp; } m = n % 5; for (i = 0; i < m; i++) { dtemp += dx[ix0+i] * dy[iy0+i]; } for (; i < n;) { dtemp += dx[ix0+i] * dy[iy0+i]; i++; dtemp += dx[ix0+i] * dy[iy0+i]; i++; dtemp += dx[ix0+i] * dy[iy0+i]; i++; dtemp += dx[ix0+i] * dy[iy0+i]; i++; dtemp += dx[ix0+i] * dy[iy0+i]; i++; } return dtemp; } template inline FloatType ddot( SizeType n, const FloatType* dx, const FloatType* dy) { return ddot( n, dx, SizeType(0), SizeType(1), dy, SizeType(0), SizeType(1)); } } // namespace detail //! Interface to the LBFGS %minimizer. /*! This class solves the unconstrained minimization problem

          min f(x),  x = (x1,x2,...,x_n),
      
using the limited-memory BFGS method. The routine is especially effective on problems involving a large number of variables. In a typical iteration of this method an approximation Hk to the inverse of the Hessian is obtained by applying m BFGS updates to a diagonal matrix Hk0, using information from the previous m steps. The user specifies the number m, which determines the amount of storage required by the routine. The user may also provide the diagonal matrices Hk0 (parameter diag in the run() function) if not satisfied with the default choice. The algorithm is described in "On the limited memory BFGS method for large scale optimization", by D. Liu and J. Nocedal, Mathematical Programming B 45 (1989) 503-528. The user is required to calculate the function value f and its gradient g. In order to allow the user complete control over these computations, reverse communication is used. The routine must be called repeatedly under the control of the member functions requests_f_and_g(), requests_diag(). If neither requests_f_and_g() nor requests_diag() is true the user should check for convergence (using class traditional_convergence_test or any other custom test). If the convergence test is negative, the minimizer may be called again for the next iteration. The steplength (stp()) is determined at each iteration by means of the line search routine mcsrch, which is a slight modification of the routine CSRCH written by More' and Thuente. The only variables that are machine-dependent are xtol, stpmin and stpmax. Fatal errors cause error exceptions to be thrown. The generic class error is sub-classed (e.g. class error_line_search_failed) to facilitate granular %error handling. A note on performance: Using Compaq Fortran V5.4 and Compaq C++ V6.5, the C++ implementation is about 15% slower than the Fortran implementation. */ template class minimizer { public: //! Default constructor. Some members are not initialized! minimizer() : n_(0), m_(0), maxfev_(0), gtol_(0), xtol_(0), stpmin_(0), stpmax_(0), ispt(0), iypt(0) {} //! Constructor. /*! @param n The number of variables in the minimization problem. Restriction: n > 0. @param m The number of corrections used in the BFGS update. Values of m less than 3 are not recommended; large values of m will result in excessive computing time. 3 <= m <= 7 is recommended. Restriction: m > 0. @param maxfev Maximum number of function evaluations per line search. Termination occurs when the number of evaluations of the objective function is at least maxfev by the end of an iteration. @param gtol Controls the accuracy of the line search. If the function and gradient evaluations are inexpensive with respect to the cost of the iteration (which is sometimes the case when solving very large problems) it may be advantageous to set gtol to a small value. A typical small value is 0.1. Restriction: gtol should be greater than 1e-4. @param xtol An estimate of the machine precision (e.g. 10e-16 on a SUN station 3/60). The line search routine will terminate if the relative width of the interval of uncertainty is less than xtol. @param stpmin Specifies the lower bound for the step in the line search. The default value is 1e-20. This value need not be modified unless the exponent is too large for the machine being used, or unless the problem is extremely badly scaled (in which case the exponent should be increased). @param stpmax specifies the upper bound for the step in the line search. The default value is 1e20. This value need not be modified unless the exponent is too large for the machine being used, or unless the problem is extremely badly scaled (in which case the exponent should be increased). */ explicit minimizer( SizeType n, SizeType m = 5, SizeType maxfev = 20, FloatType gtol = FloatType(0.9), FloatType xtol = FloatType(1.e-16), FloatType stpmin = FloatType(1.e-20), FloatType stpmax = FloatType(1.e20)) : n_(n), m_(m), maxfev_(maxfev), gtol_(gtol), xtol_(xtol), stpmin_(stpmin), stpmax_(stpmax), iflag_(0), requests_f_and_g_(false), requests_diag_(false), iter_(0), nfun_(0), stp_(0), stp1(0), ftol(0.0001), ys(0), point(0), npt(0), ispt(n+2*m), iypt((n+2*m)+n*m), info(0), bound(0), nfev(0) { if (n_ == 0) { throw error_improper_input_parameter("n = 0."); } if (m_ == 0) { throw error_improper_input_parameter("m = 0."); } if (maxfev_ == 0) { throw error_improper_input_parameter("maxfev = 0."); } if (gtol_ <= FloatType(1.e-4)) { throw error_improper_input_parameter("gtol <= 1.e-4."); } if (xtol_ < FloatType(0)) { throw error_improper_input_parameter("xtol < 0."); } if (stpmin_ < FloatType(0)) { throw error_improper_input_parameter("stpmin < 0."); } if (stpmax_ < stpmin) { throw error_improper_input_parameter("stpmax < stpmin"); } w_.resize(n_*(2*m_+1)+2*m_); scratch_array_.resize(n_); } //! Number of free parameters (as passed to the constructor). SizeType n() const { return n_; } //! Number of corrections kept (as passed to the constructor). SizeType m() const { return m_; } /*! \brief Maximum number of evaluations of the objective function per line search (as passed to the constructor). */ SizeType maxfev() const { return maxfev_; } /*! \brief Control of the accuracy of the line search. (as passed to the constructor). */ FloatType gtol() const { return gtol_; } //! Estimate of the machine precision (as passed to the constructor). FloatType xtol() const { return xtol_; } /*! \brief Lower bound for the step in the line search. (as passed to the constructor). */ FloatType stpmin() const { return stpmin_; } /*! \brief Upper bound for the step in the line search. (as passed to the constructor). */ FloatType stpmax() const { return stpmax_; } //! Status indicator for reverse communication. /*! true if the run() function returns to request evaluation of the objective function (f) and gradients (g) for the current point (x). To continue the minimization the run() function is called again with the updated values for f and g.

See also: requests_diag() */ bool requests_f_and_g() const { return requests_f_and_g_; } //! Status indicator for reverse communication. /*! true if the run() function returns to request evaluation of the diagonal matrix (diag) for the current point (x). To continue the minimization the run() function is called again with the updated values for diag.

See also: requests_f_and_g() */ bool requests_diag() const { return requests_diag_; } //! Number of iterations so far. /*! Note that one iteration may involve multiple evaluations of the objective function.

See also: nfun() */ SizeType iter() const { return iter_; } //! Total number of evaluations of the objective function so far. /*! The total number of function evaluations increases by the number of evaluations required for the line search. The total is only increased after a successful line search.

See also: iter() */ SizeType nfun() const { return nfun_; } //! Norm of gradient given gradient array of length n(). FloatType euclidean_norm(const FloatType* a) const { return std::sqrt(detail::ddot(n_, a, a)); } //! Current stepsize. FloatType stp() const { return stp_; } //! Execution of one step of the minimization. /*! @param x On initial entry this must be set by the user to the values of the initial estimate of the solution vector. @param f Before initial entry or on re-entry under the control of requests_f_and_g(), f must be set by the user to contain the value of the objective function at the current point x. @param g Before initial entry or on re-entry under the control of requests_f_and_g(), g must be set by the user to contain the components of the gradient at the current point x. The return value is true if either requests_f_and_g() or requests_diag() is true. Otherwise the user should check for convergence (e.g. using class traditional_convergence_test) and call the run() function again to continue the minimization. If the return value is false the user should not update f, g or diag (other overload) before calling the run() function again. Note that x is always modified by the run() function. Depending on the situation it can therefore be necessary to evaluate the objective function one more time after the minimization is terminated. */ bool run( FloatType* x, FloatType f, const FloatType* g) { return generic_run(x, f, g, false, 0); } //! Execution of one step of the minimization. /*! @param x See other overload. @param f See other overload. @param g See other overload. @param diag On initial entry or on re-entry under the control of requests_diag(), diag must be set by the user to contain the values of the diagonal matrix Hk0. The routine will return at each iteration of the algorithm with requests_diag() set to true.

Restriction: all elements of diag must be positive. */ bool run( FloatType* x, FloatType f, const FloatType* g, const FloatType* diag) { return generic_run(x, f, g, true, diag); } void serialize(std::ostream* out) const { out->write((const char*)&n_, sizeof(n_)); // sanity check out->write((const char*)&m_, sizeof(m_)); // sanity check SizeType fs = sizeof(FloatType); out->write((const char*)&fs, sizeof(fs)); // sanity check mcsrch_instance.serialize(out); out->write((const char*)&iflag_, sizeof(iflag_)); out->write((const char*)&requests_f_and_g_, sizeof(requests_f_and_g_)); out->write((const char*)&requests_diag_, sizeof(requests_diag_)); out->write((const char*)&iter_, sizeof(iter_)); out->write((const char*)&nfun_, sizeof(nfun_)); out->write((const char*)&stp_, sizeof(stp_)); out->write((const char*)&stp1, sizeof(stp1)); out->write((const char*)&ftol, sizeof(ftol)); out->write((const char*)&ys, sizeof(ys)); out->write((const char*)&point, sizeof(point)); out->write((const char*)&npt, sizeof(npt)); out->write((const char*)&info, sizeof(info)); out->write((const char*)&bound, sizeof(bound)); out->write((const char*)&nfev, sizeof(nfev)); out->write((const char*)&w_[0], sizeof(FloatType) * w_.size()); out->write((const char*)&scratch_array_[0], sizeof(FloatType) * scratch_array_.size()); } void deserialize(std::istream* in) { SizeType n, m, fs; in->read((char*)&n, sizeof(n)); in->read((char*)&m, sizeof(m)); in->read((char*)&fs, sizeof(fs)); assert(n == n_); assert(m == m_); assert(fs == sizeof(FloatType)); mcsrch_instance.deserialize(in); in->read((char*)&iflag_, sizeof(iflag_)); in->read((char*)&requests_f_and_g_, sizeof(requests_f_and_g_)); in->read((char*)&requests_diag_, sizeof(requests_diag_)); in->read((char*)&iter_, sizeof(iter_)); in->read((char*)&nfun_, sizeof(nfun_)); in->read((char*)&stp_, sizeof(stp_)); in->read((char*)&stp1, sizeof(stp1)); in->read((char*)&ftol, sizeof(ftol)); in->read((char*)&ys, sizeof(ys)); in->read((char*)&point, sizeof(point)); in->read((char*)&npt, sizeof(npt)); in->read((char*)&info, sizeof(info)); in->read((char*)&bound, sizeof(bound)); in->read((char*)&nfev, sizeof(nfev)); in->read((char*)&w_[0], sizeof(FloatType) * w_.size()); in->read((char*)&scratch_array_[0], sizeof(FloatType) * scratch_array_.size()); } protected: static void throw_diagonal_element_not_positive(SizeType i) { throw error_improper_input_data( "The " + error::itoa(i) + ". diagonal element of the" " inverse Hessian approximation is not positive."); } bool generic_run( FloatType* x, FloatType f, const FloatType* g, bool diagco, const FloatType* diag); detail::mcsrch mcsrch_instance; const SizeType n_; const SizeType m_; const SizeType maxfev_; const FloatType gtol_; const FloatType xtol_; const FloatType stpmin_; const FloatType stpmax_; int iflag_; bool requests_f_and_g_; bool requests_diag_; SizeType iter_; SizeType nfun_; FloatType stp_; FloatType stp1; FloatType ftol; FloatType ys; SizeType point; SizeType npt; const SizeType ispt; const SizeType iypt; int info; SizeType bound; SizeType nfev; std::vector w_; std::vector scratch_array_; }; template bool minimizer::generic_run( FloatType* x, FloatType f, const FloatType* g, bool diagco, const FloatType* diag) { bool execute_entire_while_loop = false; if (!(requests_f_and_g_ || requests_diag_)) { execute_entire_while_loop = true; } requests_f_and_g_ = false; requests_diag_ = false; FloatType* w = &(*(w_.begin())); if (iflag_ == 0) { // Initialize. nfun_ = 1; if (diagco) { for (SizeType i = 0; i < n_; i++) { if (diag[i] <= FloatType(0)) { throw_diagonal_element_not_positive(i); } } } else { std::fill_n(scratch_array_.begin(), n_, FloatType(1)); diag = &(*(scratch_array_.begin())); } for (SizeType i = 0; i < n_; i++) { w[ispt + i] = -g[i] * diag[i]; } FloatType gnorm = std::sqrt(detail::ddot(n_, g, g)); if (gnorm == FloatType(0)) return false; stp1 = FloatType(1) / gnorm; execute_entire_while_loop = true; } if (execute_entire_while_loop) { bound = iter_; iter_++; info = 0; if (iter_ != 1) { if (iter_ > m_) bound = m_; ys = detail::ddot( n_, w, iypt + npt, SizeType(1), w, ispt + npt, SizeType(1)); if (!diagco) { FloatType yy = detail::ddot( n_, w, iypt + npt, SizeType(1), w, iypt + npt, SizeType(1)); std::fill_n(scratch_array_.begin(), n_, ys / yy); diag = &(*(scratch_array_.begin())); } else { iflag_ = 2; requests_diag_ = true; return true; } } } if (execute_entire_while_loop || iflag_ == 2) { if (iter_ != 1) { if (diag == 0) { throw error_internal_error(__FILE__, __LINE__); } if (diagco) { for (SizeType i = 0; i < n_; i++) { if (diag[i] <= FloatType(0)) { throw_diagonal_element_not_positive(i); } } } SizeType cp = point; if (point == 0) cp = m_; w[n_ + cp -1] = 1 / ys; SizeType i; for (i = 0; i < n_; i++) { w[i] = -g[i]; } cp = point; for (i = 0; i < bound; i++) { if (cp == 0) cp = m_; cp--; FloatType sq = detail::ddot( n_, w, ispt + cp * n_, SizeType(1), w, SizeType(0), SizeType(1)); SizeType inmc=n_+m_+cp; SizeType iycn=iypt+cp*n_; w[inmc] = w[n_ + cp] * sq; detail::daxpy(n_, -w[inmc], w, iycn, w); } for (i = 0; i < n_; i++) { w[i] *= diag[i]; } for (i = 0; i < bound; i++) { FloatType yr = detail::ddot( n_, w, iypt + cp * n_, SizeType(1), w, SizeType(0), SizeType(1)); FloatType beta = w[n_ + cp] * yr; SizeType inmc=n_+m_+cp; beta = w[inmc] - beta; SizeType iscn=ispt+cp*n_; detail::daxpy(n_, beta, w, iscn, w); cp++; if (cp == m_) cp = 0; } std::copy(w, w+n_, w+(ispt + point * n_)); } stp_ = FloatType(1); if (iter_ == 1) stp_ = stp1; std::copy(g, g+n_, w); } mcsrch_instance.run( gtol_, stpmin_, stpmax_, n_, x, f, g, w, ispt + point * n_, stp_, ftol, xtol_, maxfev_, info, nfev, &(*(scratch_array_.begin()))); if (info == -1) { iflag_ = 1; requests_f_and_g_ = true; return true; } if (info != 1) { throw error_internal_error(__FILE__, __LINE__); } nfun_ += nfev; npt = point*n_; for (SizeType i = 0; i < n_; i++) { w[ispt + npt + i] = stp_ * w[ispt + npt + i]; w[iypt + npt + i] = g[i] - w[i]; } point++; if (point == m_) point = 0; return false; } //! Traditional LBFGS convergence test. /*! This convergence test is equivalent to the test embedded in the lbfgs.f Fortran code. The test assumes that there is a meaningful relation between the Euclidean norm of the parameter vector x and the norm of the gradient vector g. Therefore this test should not be used if this assumption is not correct for a given problem. */ template class traditional_convergence_test { public: //! Default constructor. traditional_convergence_test() : n_(0), eps_(0) {} //! Constructor. /*! @param n The number of variables in the minimization problem. Restriction: n > 0. @param eps Determines the accuracy with which the solution is to be found. */ explicit traditional_convergence_test( SizeType n, FloatType eps = FloatType(1.e-5)) : n_(n), eps_(eps) { if (n_ == 0) { throw error_improper_input_parameter("n = 0."); } if (eps_ < FloatType(0)) { throw error_improper_input_parameter("eps < 0."); } } //! Number of free parameters (as passed to the constructor). SizeType n() const { return n_; } /*! \brief Accuracy with which the solution is to be found (as passed to the constructor). */ FloatType eps() const { return eps_; } //! Execution of the convergence test for the given parameters. /*! Returns true if

            ||g|| < eps * max(1,||x||),
          
where ||.|| denotes the Euclidean norm. @param x Current solution vector. @param g Components of the gradient at the current point x. */ bool operator()(const FloatType* x, const FloatType* g) const { FloatType xnorm = std::sqrt(detail::ddot(n_, x, x)); FloatType gnorm = std::sqrt(detail::ddot(n_, g, g)); if (gnorm <= eps_ * std::max(FloatType(1), xnorm)) return true; return false; } protected: const SizeType n_; const FloatType eps_; }; }} // namespace scitbx::lbfgs template std::ostream& operator<<(std::ostream& os, const scitbx::lbfgs::minimizer& min) { return os << "ITER=" << min.iter() << "\tNFUN=" << min.nfun() << "\tSTP=" << min.stp() << "\tDIAG=" << min.requests_diag() << "\tF&G=" << min.requests_f_and_g(); } #endif // SCITBX_LBFGS_H