#include "candidate_set.h" #include <tr1/unordered_set> #include <boost/functional/hash.hpp> #include "verbose.h" #include "ns.h" #include "filelib.h" #include "wordid.h" #include "tdict.h" #include "hg.h" #include "kbest.h" #include "viterbi.h" using namespace std; namespace training { struct ApproxVectorHasher { static const size_t MASK = 0xFFFFFFFFull; union UType { double f; // leave as double size_t i; }; static inline double round(const double x) { UType t; t.f = x; size_t r = t.i & MASK; if ((r << 1) > MASK) t.i += MASK - r + 1; else t.i &= (1ull - MASK); return t.f; } size_t operator()(const SparseVector<double>& x) const { size_t h = 0x573915839; for (SparseVector<double>::const_iterator it = x.begin(); it != x.end(); ++it) { UType t; t.f = it->second; if (t.f) { size_t z = (t.i >> 32); boost::hash_combine(h, it->first); boost::hash_combine(h, z); } } return h; } }; struct ApproxVectorEquals { bool operator()(const SparseVector<double>& a, const SparseVector<double>& b) const { SparseVector<double>::const_iterator bit = b.begin(); for (SparseVector<double>::const_iterator ait = a.begin(); ait != a.end(); ++ait) { if (bit == b.end() || ait->first != bit->first || ApproxVectorHasher::round(ait->second) != ApproxVectorHasher::round(bit->second)) return false; ++bit; } if (bit != b.end()) return false; return true; } }; struct CandidateCompare { bool operator()(const Candidate& a, const Candidate& b) const { ApproxVectorEquals eq; return (a.ewords == b.ewords && eq(a.fmap,b.fmap)); } }; struct CandidateHasher { size_t operator()(const Candidate& x) const { boost::hash<vector<WordID> > hhasher; ApproxVectorHasher vhasher; size_t ha = hhasher(x.ewords); boost::hash_combine(ha, vhasher(x.fmap)); return ha; } }; static void ParseSparseVector(string& line, size_t cur, SparseVector<double>* out) { SparseVector<double>& x = *out; size_t last_start = cur; size_t last_comma = string::npos; while(cur <= line.size()) { if (line[cur] == ' ' || cur == line.size()) { if (!(cur > last_start && last_comma != string::npos && cur > last_comma)) { cerr << "[ERROR] " << line << endl << " position = " << cur << endl; exit(1); } const int fid = FD::Convert(line.substr(last_start, last_comma - last_start)); if (cur < line.size()) line[cur] = 0; const double val = strtod(&line[last_comma + 1], NULL); x.set_value(fid, val); last_comma = string::npos; last_start = cur+1; } else { if (line[cur] == '=') last_comma = cur; } ++cur; } } void CandidateSet::WriteToFile(const string& file) const { WriteFile wf(file); ostream& out = *wf.stream(); out.precision(10); string ss; for (unsigned i = 0; i < cs.size(); ++i) { out << TD::GetString(cs[i].ewords) << endl; out << cs[i].fmap << endl; cs[i].eval_feats.Encode(&ss); out << ss << endl; } } void CandidateSet::ReadFromFile(const string& file) { if(!SILENT) cerr << "Reading candidates from " << file << endl; ReadFile rf(file); istream& in = *rf.stream(); string cand; string feats; string ss; while(getline(in, cand)) { getline(in, feats); getline(in, ss); assert(in); cs.push_back(Candidate()); TD::ConvertSentence(cand, &cs.back().ewords); ParseSparseVector(feats, 0, &cs.back().fmap); cs.back().eval_feats = SufficientStats(ss); } if(!SILENT) cerr << " read " << cs.size() << " candidates\n"; } void CandidateSet::Dedup() { if(!SILENT) cerr << "Dedup in=" << cs.size(); tr1::unordered_set<Candidate, CandidateHasher, CandidateCompare> u; while(cs.size() > 0) { u.insert(cs.back()); cs.pop_back(); } tr1::unordered_set<Candidate, CandidateHasher, CandidateCompare>::iterator it = u.begin(); while (it != u.end()) { cs.push_back(*it); it = u.erase(it); } if(!SILENT) cerr << " out=" << cs.size() << endl; } void CandidateSet::AddKBestCandidates(const Hypergraph& hg, size_t kbest_size, const SegmentEvaluator* scorer) { KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(hg, kbest_size); for (unsigned i = 0; i < kbest_size; ++i) { const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d = kbest.LazyKthBest(hg.nodes_.size() - 1, i); if (!d) break; cs.push_back(Candidate(d->yield, d->feature_values)); if (scorer) scorer->Evaluate(d->yield, &cs.back().eval_feats); } Dedup(); } }