#include <sstream> #include <iostream> #include <fstream> #include <vector> #include <cassert> #include <cmath> #include <boost/shared_ptr.hpp> #include <boost/program_options.hpp> #include <boost/program_options/variables_map.hpp> #include "stringlib.h" #include "verbose.h" #include "hg.h" #include "prob.h" #include "inside_outside.h" #include "ff_register.h" #include "decoder.h" #include "filelib.h" #include "optimize.h" #include "fdict.h" #include "weights.h" #include "sparse_vector.h" #include "sampler.h" #ifdef HAVE_MPI #include <boost/mpi/timer.hpp> #include <boost/mpi.hpp> namespace mpi = boost::mpi; #endif using namespace std; namespace po = boost::program_options; bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() ("cdec_config,c",po::value<string>(),"Decoder configuration file") ("weights,w",po::value<string>(),"Initial feature weights") ("training_data,d",po::value<string>(),"Training data") ("minibatch_size_per_proc,s", po::value<unsigned>()->default_value(6), "Number of training instances evaluated per processor in each minibatch") ("minibatch_iterations,i", po::value<unsigned>()->default_value(10), "Number of optimization iterations per minibatch") ("iterations,I", po::value<unsigned>()->default_value(50), "Number of passes through the training data before termination") ("regularization_strength,C", po::value<double>()->default_value(0.2), "Regularization strength") ("time_series_strength,T", po::value<double>()->default_value(0.0), "Time series regularization strength") ("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)") ("lbfgs_memory_buffers,M", po::value<unsigned>()->default_value(10), "Number of memory buffers for LBFGS history"); po::options_description clo("Command line options"); clo.add_options() ("config", po::value<string>(), "Configuration file") ("help,h", "Print this help message and exit"); po::options_description dconfig_options, dcmdline_options; dconfig_options.add(opts); dcmdline_options.add(opts).add(clo); po::store(parse_command_line(argc, argv, dcmdline_options), *conf); if (conf->count("config")) { ifstream config((*conf)["config"].as<string>().c_str()); po::store(po::parse_config_file(config, dconfig_options), *conf); } po::notify(*conf); if (conf->count("help") || !conf->count("training_data") || !conf->count("cdec_config")) { cerr << "LBFGS minibatch online optimizer (MPI support " #if HAVE_MPI << "enabled" #else << "not enabled" #endif << ")\n" << dcmdline_options << endl; return false; } return true; } void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c, vector<int>* order) { ReadFile rf(fname); istream& in = *rf.stream(); string line; int id = 0; while(in) { getline(in, line); if (!in) break; if (id % size == rank) { c->push_back(line); order->push_back(id); } ++id; } } static const double kMINUS_EPSILON = -1e-6; struct CopyHGsObserver : public DecoderObserver { Hypergraph* hg_; Hypergraph* gold_hg_; // this can free up some memory void RemoveRules(Hypergraph* h) { for (unsigned i = 0; i < h->edges_.size(); ++i) h->edges_[i].rule_.reset(); } void SetCurrentHypergraphs(Hypergraph* h, Hypergraph* gold_h) { hg_ = h; gold_hg_ = gold_h; } virtual void NotifyDecodingStart(const SentenceMetadata&) { state = 1; } // compute model expectations, denominator of objective virtual void NotifyTranslationForest(const SentenceMetadata&, Hypergraph* hg) { *hg_ = *hg; RemoveRules(hg_); assert(state == 1); state = 2; } // compute "empirical" expectations, numerator of objective virtual void NotifyAlignmentForest(const SentenceMetadata&, Hypergraph* hg) { assert(state == 2); state = 3; *gold_hg_ = *hg; RemoveRules(gold_hg_); } virtual void NotifyDecodingComplete(const SentenceMetadata&) { if (state == 3) { } else { hg_->clear(); gold_hg_->clear(); } } int state; }; void ReadConfig(const string& ini, istringstream* out) { ReadFile rf(ini); istream& in = *rf.stream(); ostringstream os; while(in) { string line; getline(in, line); if (!in) continue; os << line << endl; } out->str(os.str()); } #ifdef HAVE_MPI namespace boost { namespace mpi { template<> struct is_commutative<std::plus<SparseVector<double> >, SparseVector<double> > : mpl::true_ { }; } } // end namespace boost::mpi #endif void AddGrad(const SparseVector<prob_t> x, double s, SparseVector<double>* acc) { for (SparseVector<prob_t>::const_iterator it = x.begin(); it != x.end(); ++it) acc->add_value(it->first, it->second.as_float() * s); } double PNorm(const vector<double>& v, const double p) { double acc = 0; for (int i = 0; i < v.size(); ++i) acc += pow(v[i], p); return pow(acc, 1.0 / p); } void VV(ostream&os, const vector<double>& v) { for (int i = 1; i < v.size(); ++i) if (v[i]) os << FD::Convert(i) << "=" << v[i] << " "; } double ApplyRegularizationTerms(const double C, const double T, const vector<double>& weights, const vector<double>& prev_weights, double* g) { double reg = 0; for (size_t i = 0; i < weights.size(); ++i) { const double prev_w_i = (i < prev_weights.size() ? prev_weights[i] : 0.0); const double& w_i = weights[i]; reg += C * w_i * w_i; g[i] += 2 * C * w_i; reg += T * (w_i - prev_w_i) * (w_i - prev_w_i); g[i] += 2 * T * (w_i - prev_w_i); } return reg; } int main(int argc, char** argv) { #ifdef HAVE_MPI mpi::environment env(argc, argv); mpi::communicator world; const int size = world.size(); const int rank = world.rank(); #else const int size = 1; const int rank = 0; #endif if (size > 1) SetSilent(true); // turn off verbose decoder output register_feature_functions(); MT19937* rng = NULL; po::variables_map conf; if (!InitCommandLine(argc, argv, &conf)) return 1; boost::shared_ptr<BatchOptimizer> o; const unsigned lbfgs_memory_buffers = conf["lbfgs_memory_buffers"].as<unsigned>(); const unsigned size_per_proc = conf["minibatch_size_per_proc"].as<unsigned>(); const unsigned minibatch_iterations = conf["minibatch_iterations"].as<unsigned>(); const double regularization_strength = conf["regularization_strength"].as<double>(); const double time_series_strength = conf["time_series_strength"].as<double>(); const bool use_time_series_reg = time_series_strength > 0.0; const unsigned max_iteration = conf["iterations"].as<unsigned>(); vector<string> corpus; vector<int> ids; ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus, &ids); assert(corpus.size() > 0); if (size_per_proc > corpus.size()) { cerr << "Minibatch size (per processor) must be smaller or equal to the local corpus size!\n"; return 1; } // initialize decoder (loads hash functions if necessary) istringstream ins; ReadConfig(conf["cdec_config"].as<string>(), &ins); Decoder decoder(&ins); // load initial weights vector<weight_t> prev_weights; if (conf.count("weights")) Weights::InitFromFile(conf["weights"].as<string>(), &prev_weights); if (conf.count("random_seed")) rng = new MT19937(conf["random_seed"].as<uint32_t>()); else rng = new MT19937; size_t total_corpus_size = 0; #ifdef HAVE_MPI reduce(world, corpus.size(), total_corpus_size, std::plus<size_t>(), 0); #else total_corpus_size = corpus.size(); #endif if (rank == 0) cerr << "Total corpus size: " << total_corpus_size << endl; CopyHGsObserver observer; int write_weights_every_ith = 100; // TODO configure int titer = -1; vector<weight_t>& cur_weights = decoder.CurrentWeightVector(); if (use_time_series_reg) { cur_weights = prev_weights; } else { cur_weights.swap(prev_weights); prev_weights.clear(); } int iter = -1; bool converged = false; vector<double> gg; while (!converged) { #ifdef HAVE_MPI mpi::timer timer; #endif ++iter; ++titer; if (rank == 0) { converged = (iter == max_iteration); string fname = "weights.cur.gz"; if (iter % write_weights_every_ith == 0) { ostringstream o; o << "weights.epoch_" << iter << ".gz"; fname = o.str(); } if (converged) { fname = "weights.final.gz"; } ostringstream vv; vv << "total iter=" << titer << " (of current config iter=" << iter << ") minibatch=" << size_per_proc << " sentences/proc x " << size << " procs. num_feats=" << FD::NumFeats() << " passes_thru_data=" << (titer * size_per_proc / static_cast<double>(corpus.size())); const string svv = vv.str(); Weights::WriteToFile(fname, cur_weights, true, &svv); } vector<Hypergraph> hgs(size_per_proc); vector<Hypergraph> gold_hgs(size_per_proc); for (int i = 0; i < size_per_proc; ++i) { int ei = corpus.size() * rng->next(); int id = ids[ei]; observer.SetCurrentHypergraphs(&hgs[i], &gold_hgs[i]); decoder.SetId(id); decoder.Decode(corpus[ei], &observer); } SparseVector<double> local_grad, g; double local_obj = 0; o.reset(); for (unsigned mi = 0; mi < minibatch_iterations; ++mi) { local_grad.clear(); g.clear(); local_obj = 0; for (unsigned i = 0; i < size_per_proc; ++i) { Hypergraph& hg = hgs[i]; Hypergraph& hg_gold = gold_hgs[i]; if (hg.edges_.size() < 2) continue; hg.Reweight(cur_weights); hg_gold.Reweight(cur_weights); SparseVector<prob_t> model_exp, gold_exp; const prob_t z = InsideOutside<prob_t, EdgeProb, SparseVector<prob_t>, EdgeFeaturesAndProbWeightFunction>(hg, &model_exp); local_obj += log(z); model_exp /= z; AddGrad(model_exp, 1.0, &local_grad); model_exp.clear(); const prob_t goldz = InsideOutside<prob_t, EdgeProb, SparseVector<prob_t>, EdgeFeaturesAndProbWeightFunction>(hg_gold, &gold_exp); local_obj -= log(goldz); if (log(z) - log(goldz) < kMINUS_EPSILON) { cerr << "DIFF. ERR! log_model_z < log_gold_z: " << log(z) << " " << log(goldz) << endl; return 1; } gold_exp /= goldz; AddGrad(gold_exp, -1.0, &local_grad); } double obj = 0; #ifdef HAVE_MPI reduce(world, local_obj, obj, std::plus<double>(), 0); reduce(world, local_grad, g, std::plus<SparseVector<double> >(), 0); #else obj = local_obj; g.swap(local_grad); #endif local_grad.clear(); if (rank == 0) { // g /= (size_per_proc * size); if (!o) o.reset(new LBFGSOptimizer(FD::NumFeats(), lbfgs_memory_buffers)); gg.clear(); gg.resize(FD::NumFeats()); if (gg.size() != cur_weights.size()) { cur_weights.resize(gg.size()); } for (SparseVector<double>::iterator it = g.begin(); it != g.end(); ++it) if (it->first) { gg[it->first] = it->second; } g.clear(); double r = ApplyRegularizationTerms(regularization_strength, time_series_strength, // * (iter == 0 ? 0.0 : 1.0), cur_weights, prev_weights, &gg[0]); obj += r; if (mi == 0 || mi == (minibatch_iterations - 1)) { if (!mi) cerr << iter << ' '; else cerr << ' '; cerr << "OBJ=" << obj << " (REG=" << r << ")" << " |g|=" << PNorm(gg, 2) << " |w|=" << PNorm(cur_weights, 2); if (mi > 0) cerr << endl << flush; else cerr << ' '; } else { cerr << '.' << flush; } // cerr << "w = "; VV(cerr, cur_weights); cerr << endl; // cerr << "g = "; VV(cerr, gg); cerr << endl; o->Optimize(obj, gg, &cur_weights); } #ifdef HAVE_MPI broadcast(world, cur_weights, 0); broadcast(world, converged, 0); world.barrier(); #endif } prev_weights = cur_weights; } return 0; }