#include <iostream> #include <vector> #include <cassert> #include <cmath> #include "config.h" #ifdef HAVE_MPI #include <boost/mpi.hpp> #endif #include <boost/program_options.hpp> #include <boost/program_options/variables_map.hpp> #include "sentence_metadata.h" #include "verbose.h" #include "hg.h" #include "prob.h" #include "inside_outside.h" #include "ff_register.h" #include "decoder.h" #include "filelib.h" #include "weights.h" using namespace std; namespace po = boost::program_options; bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() ("weights,w",po::value<string>(),"Input feature weights file") ("training_data,t",po::value<string>(),"Training data corpus") ("decoder_config,c",po::value<string>(),"Decoder configuration file"); po::options_description clo("Command line options"); clo.add_options() ("config", po::value<string>(), "Configuration file") ("help,h", "Print this help message and exit"); po::options_description dconfig_options, dcmdline_options; dconfig_options.add(opts); dcmdline_options.add(opts).add(clo); po::store(parse_command_line(argc, argv, dcmdline_options), *conf); if (conf->count("config")) { ifstream config((*conf)["config"].as<string>().c_str()); po::store(po::parse_config_file(config, dconfig_options), *conf); } po::notify(*conf); if (conf->count("help") || !conf->count("training_data") || !conf->count("decoder_config")) { cerr << dcmdline_options << endl; return false; } return true; } void ReadInstances(const string& fname, int rank, int size, vector<string>* c) { assert(fname != "-"); ReadFile rf(fname); istream& in = *rf.stream(); string line; int lc = 0; while(in) { getline(in, line); if (!in) break; if (lc % size == rank) c->push_back(line); ++lc; } } static const double kMINUS_EPSILON = -1e-6; struct ConditionalLikelihoodObserver : public DecoderObserver { ConditionalLikelihoodObserver() : trg_words(), acc_obj(), cur_obj() {} virtual void NotifyDecodingStart(const SentenceMetadata&) { cur_obj = 0; state = 1; } // compute model expectations, denominator of objective virtual void NotifyTranslationForest(const SentenceMetadata&, Hypergraph* hg) { assert(state == 1); state = 2; SparseVector<prob_t> cur_model_exp; const prob_t z = InsideOutside<prob_t, EdgeProb, SparseVector<prob_t>, EdgeFeaturesAndProbWeightFunction>(*hg, &cur_model_exp); cur_obj = log(z); } // compute "empirical" expectations, numerator of objective virtual void NotifyAlignmentForest(const SentenceMetadata& smeta, Hypergraph* hg) { assert(state == 2); state = 3; SparseVector<prob_t> ref_exp; const prob_t ref_z = InsideOutside<prob_t, EdgeProb, SparseVector<prob_t>, EdgeFeaturesAndProbWeightFunction>(*hg, &ref_exp); double log_ref_z; #if 0 if (crf_uniform_empirical) { log_ref_z = ref_exp.dot(feature_weights); } else { log_ref_z = log(ref_z); } #else log_ref_z = log(ref_z); #endif // rounding errors means that <0 is too strict if ((cur_obj - log_ref_z) < kMINUS_EPSILON) { cerr << "DIFF. ERR! log_model_z < log_ref_z: " << cur_obj << " " << log_ref_z << endl; exit(1); } assert(!isnan(log_ref_z)); acc_obj += (cur_obj - log_ref_z); trg_words += smeta.GetReference().size(); } unsigned trg_words; double acc_obj; double cur_obj; int state; }; #ifdef HAVE_MPI namespace mpi = boost::mpi; #endif int main(int argc, char** argv) { #ifdef HAVE_MPI mpi::environment env(argc, argv); mpi::communicator world; const int size = world.size(); const int rank = world.rank(); #else const int size = 1; const int rank = 0; #endif if (size > 1) SetSilent(true); // turn off verbose decoder output register_feature_functions(); po::variables_map conf; if (!InitCommandLine(argc, argv, &conf)) return false; // load cdec.ini and set up decoder ReadFile ini_rf(conf["decoder_config"].as<string>()); Decoder decoder(ini_rf.stream()); if (decoder.GetConf()["input"].as<string>() != "-") { cerr << "cdec.ini must not set an input file\n"; abort(); } // load weights vector<weight_t>& weights = decoder.CurrentWeightVector(); if (conf.count("weights")) Weights::InitFromFile(conf["weights"].as<string>(), &weights); vector<string> corpus; ReadInstances(conf["training_data"].as<string>(), rank, size, &corpus); assert(corpus.size() > 0); if (rank == 0) cerr << "Each processor is decoding ~" << corpus.size() << " training examples...\n"; ConditionalLikelihoodObserver observer; for (int i = 0; i < corpus.size(); ++i) decoder.Decode(corpus[i], &observer); double objective = 0; unsigned total_words = 0; #ifdef HAVE_MPI reduce(world, observer.acc_obj, objective, std::plus<double>(), 0); reduce(world, observer.trg_words, total_words, std::plus<unsigned>(), 0); #else objective = observer.acc_obj; #endif if (rank == 0) { cout << "CONDITIONAL LOG_e LIKELIHOOD: " << objective << endl; cout << "CONDITIONAL LOG_2 LIKELIHOOD: " << (objective/log(2)) << endl; cout << " CONDITIONAL ENTROPY: " << (objective/log(2) / total_words) << endl; cout << " PERPLEXITY: " << pow(2, (objective/log(2) / total_words)) << endl; } return 0; }