#include <sstream> #include <iostream> #include <vector> #include <cassert> #include <cmath> #include <mpi.h> #include <boost/shared_ptr.hpp> #include <boost/program_options.hpp> #include <boost/program_options/variables_map.hpp> #include "verbose.h" #include "hg.h" #include "prob.h" #include "inside_outside.h" #include "ff_register.h" #include "decoder.h" #include "filelib.h" #include "optimize.h" #include "fdict.h" #include "weights.h" #include "sparse_vector.h" using namespace std; using boost::shared_ptr; namespace po = boost::program_options; void SanityCheck(const vector<double>& w) { for (int i = 0; i < w.size(); ++i) { assert(!isnan(w[i])); assert(!isinf(w[i])); } } struct FComp { const vector<double>& w_; FComp(const vector<double>& w) : w_(w) {} bool operator()(int a, int b) const { return fabs(w_[a]) > fabs(w_[b]); } }; void ShowLargestFeatures(const vector<double>& w) { vector<int> fnums(w.size()); for (int i = 0; i < w.size(); ++i) fnums[i] = i; vector<int>::iterator mid = fnums.begin(); mid += (w.size() > 10 ? 10 : w.size()); partial_sort(fnums.begin(), mid, fnums.end(), FComp(w)); cerr << "TOP FEATURES:"; for (vector<int>::iterator i = fnums.begin(); i != mid; ++i) { cerr << ' ' << FD::Convert(*i) << '=' << w[*i]; } cerr << endl; } void InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() ("input_weights,w",po::value<string>(),"Input feature weights file") ("training_data,t",po::value<string>(),"Training data") ("decoder_config,d",po::value<string>(),"Decoder configuration file") ("sharded_input,s",po::value<string>(), "Corpus and grammar files are 'sharded' so each processor loads its own input and grammar file. Argument is the directory containing the shards.") ("output_weights,o",po::value<string>()->default_value("-"),"Output feature weights file") ("optimization_method,m", po::value<string>()->default_value("lbfgs"), "Optimization method (sgd, lbfgs, rprop)") ("correction_buffers,M", po::value<int>()->default_value(10), "Number of gradients for LBFGS to maintain in memory") ("gaussian_prior,p","Use a Gaussian prior on the weights") ("means,u", po::value<string>(), "File containing the means for Gaussian prior") ("sigma_squared", po::value<double>()->default_value(1.0), "Sigma squared term for spherical Gaussian prior"); po::options_description clo("Command line options"); clo.add_options() ("config", po::value<string>(), "Configuration file") ("help,h", "Print this help message and exit"); po::options_description dconfig_options, dcmdline_options; dconfig_options.add(opts); dcmdline_options.add(opts).add(clo); po::store(parse_command_line(argc, argv, dcmdline_options), *conf); if (conf->count("config")) { ifstream config((*conf)["config"].as<string>().c_str()); po::store(po::parse_config_file(config, dconfig_options), *conf); } po::notify(*conf); if (conf->count("help") || !conf->count("input_weights") || !(conf->count("training_data") | conf->count("sharded_input")) || !conf->count("decoder_config")) { cerr << dcmdline_options << endl; MPI::Finalize(); exit(1); } if (conf->count("training_data") && conf->count("sharded_input")) { cerr << "Cannot specify both --training_data and --sharded_input\n"; MPI::Finalize(); exit(1); } } void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c) { ReadFile rf(fname); istream& in = *rf.stream(); string line; int lc = 0; while(in) { getline(in, line); if (!in) break; if (lc % size == rank) c->push_back(line); ++lc; } } static const double kMINUS_EPSILON = -1e-6; struct TrainingObserver : public DecoderObserver { void Reset() { acc_grad.clear(); acc_obj = 0; total_complete = 0; } void SetLocalGradientAndObjective(vector<double>* g, double* o) const { *o = acc_obj; for (SparseVector<prob_t>::const_iterator it = acc_grad.begin(); it != acc_grad.end(); ++it) (*g)[it->first] = it->second; } virtual void NotifyDecodingStart(const SentenceMetadata& smeta) { cur_model_exp.clear(); cur_obj = 0; state = 1; } // compute model expectations, denominator of objective virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) { assert(state == 1); state = 2; const prob_t z = InsideOutside<prob_t, EdgeProb, SparseVector<prob_t>, EdgeFeaturesAndProbWeightFunction>(*hg, &cur_model_exp); cur_obj = log(z); cur_model_exp /= z; } // compute "empirical" expectations, numerator of objective virtual void NotifyAlignmentForest(const SentenceMetadata& smeta, Hypergraph* hg) { assert(state == 2); state = 3; SparseVector<prob_t> ref_exp; const prob_t ref_z = InsideOutside<prob_t, EdgeProb, SparseVector<prob_t>, EdgeFeaturesAndProbWeightFunction>(*hg, &ref_exp); ref_exp /= ref_z; double log_ref_z; #if 0 if (crf_uniform_empirical) { log_ref_z = ref_exp.dot(feature_weights); } else { log_ref_z = log(ref_z); } #else log_ref_z = log(ref_z); #endif // rounding errors means that <0 is too strict if ((cur_obj - log_ref_z) < kMINUS_EPSILON) { cerr << "DIFF. ERR! log_model_z < log_ref_z: " << cur_obj << " " << log_ref_z << endl; exit(1); } assert(!isnan(log_ref_z)); ref_exp -= cur_model_exp; acc_grad -= ref_exp; acc_obj += (cur_obj - log_ref_z); } virtual void NotifyDecodingComplete(const SentenceMetadata& smeta) { if (state == 3) { ++total_complete; } else { } } int total_complete; SparseVector<prob_t> cur_model_exp; SparseVector<prob_t> acc_grad; double acc_obj; double cur_obj; int state; }; void ReadConfig(const string& ini, vector<string>* out) { ReadFile rf(ini); istream& in = *rf.stream(); while(in) { string line; getline(in, line); if (!in) continue; out->push_back(line); } } void StoreConfig(const vector<string>& cfg, istringstream* o) { ostringstream os; for (int i = 0; i < cfg.size(); ++i) { os << cfg[i] << endl; } o->str(os.str()); } int main(int argc, char** argv) { MPI::Init(argc, argv); const int size = MPI::COMM_WORLD.Get_size(); const int rank = MPI::COMM_WORLD.Get_rank(); SetSilent(true); // turn off verbose decoder output register_feature_functions(); po::variables_map conf; InitCommandLine(argc, argv, &conf); string shard_dir; if (conf.count("sharded_input")) { shard_dir = conf["sharded_input"].as<string>(); if (!DirectoryExists(shard_dir)) { if (rank == 0) cerr << "Can't find shard directory: " << shard_dir << endl; MPI::Finalize(); return 1; } if (rank == 0) cerr << "Shard directory: " << shard_dir << endl; } // load initial weights Weights weights; if (rank == 0) { cerr << "Loading weights...\n"; } weights.InitFromFile(conf["input_weights"].as<string>()); if (rank == 0) { cerr << "Done loading weights.\n"; } // freeze feature set (should be optional?) const bool freeze_feature_set = true; if (freeze_feature_set) FD::Freeze(); // load cdec.ini and set up decoder vector<string> cdec_ini; ReadConfig(conf["decoder_config"].as<string>(), &cdec_ini); if (shard_dir.size()) { if (rank == 0) { for (int i = 0; i < cdec_ini.size(); ++i) { if (cdec_ini[i].find("grammar=") == 0) { cerr << "!!! using sharded input and " << conf["decoder_config"].as<string>() << " contains a grammar specification:\n" << cdec_ini[i] << "\n VERIFY THAT THIS IS CORRECT!\n"; } } } ostringstream g; g << "grammar=" << shard_dir << "/grammar." << rank << "_of_" << size << ".gz"; cdec_ini.push_back(g.str()); } istringstream ini; StoreConfig(cdec_ini, &ini); if (rank == 0) cerr << "Loading grammar...\n"; Decoder* decoder = new Decoder(&ini); if (decoder->GetConf()["input"].as<string>() != "-") { cerr << "cdec.ini must not set an input file\n"; MPI::COMM_WORLD.Abort(1); } if (rank == 0) cerr << "Done loading grammar!\n"; const int num_feats = FD::NumFeats(); if (rank == 0) cerr << "Number of features: " << num_feats << endl; const bool gaussian_prior = conf.count("gaussian_prior"); vector<double> means(num_feats, 0); if (conf.count("means")) { if (!gaussian_prior) { cerr << "Don't use --means without --gaussian_prior!\n"; exit(1); } Weights wm; wm.InitFromFile(conf["means"].as<string>()); if (num_feats != FD::NumFeats()) { cerr << "[ERROR] Means file had unexpected features!\n"; exit(1); } wm.InitVector(&means); } shared_ptr<BatchOptimizer> o; if (rank == 0) { const string omethod = conf["optimization_method"].as<string>(); if (omethod == "rprop") o.reset(new RPropOptimizer(num_feats)); // TODO add configuration else o.reset(new LBFGSOptimizer(num_feats, conf["correction_buffers"].as<int>())); cerr << "Optimizer: " << o->Name() << endl; } double objective = 0; vector<double> lambdas(num_feats, 0.0); weights.InitVector(&lambdas); if (lambdas.size() != num_feats) { cerr << "Initial weights file did not have all features specified!\n feats=" << num_feats << "\n weights file=" << lambdas.size() << endl; lambdas.resize(num_feats, 0.0); } vector<double> gradient(num_feats, 0.0); vector<double> rcv_grad(num_feats, 0.0); bool converged = false; vector<string> corpus; if (shard_dir.size()) { ostringstream os; os << shard_dir << "/corpus." << rank << "_of_" << size; ReadTrainingCorpus(os.str(), 0, 1, &corpus); cerr << os.str() << " has " << corpus.size() << " training examples. " << endl; if (corpus.size() > 500) { corpus.resize(500); cerr << " TRUNCATING\n"; } } else { ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus); } assert(corpus.size() > 0); TrainingObserver observer; while (!converged) { observer.Reset(); if (rank == 0) { cerr << "Starting decoding... (~" << corpus.size() << " sentences / proc)\n"; } decoder->SetWeights(lambdas); for (int i = 0; i < corpus.size(); ++i) decoder->Decode(corpus[i], &observer); fill(gradient.begin(), gradient.end(), 0); fill(rcv_grad.begin(), rcv_grad.end(), 0); observer.SetLocalGradientAndObjective(&gradient, &objective); double to = 0; MPI::COMM_WORLD.Reduce(const_cast<double*>(&gradient.data()[0]), &rcv_grad[0], num_feats, MPI::DOUBLE, MPI::SUM, 0); MPI::COMM_WORLD.Reduce(&objective, &to, 1, MPI::DOUBLE, MPI::SUM, 0); swap(gradient, rcv_grad); objective = to; if (rank == 0) { // run optimizer only on rank=0 node if (gaussian_prior) { const double sigsq = conf["sigma_squared"].as<double>(); double norm = 0; for (int k = 1; k < lambdas.size(); ++k) { const double& lambda_k = lambdas[k]; if (lambda_k) { const double param = (lambda_k - means[k]); norm += param * param; gradient[k] += param / sigsq; } } const double reg = norm / (2.0 * sigsq); cerr << "REGULARIZATION TERM: " << reg << endl; objective += reg; } cerr << "EVALUATION #" << o->EvaluationCount() << " OBJECTIVE: " << objective << endl; double gnorm = 0; for (int i = 0; i < gradient.size(); ++i) gnorm += gradient[i] * gradient[i]; cerr << " GNORM=" << sqrt(gnorm) << endl; vector<double> old = lambdas; int c = 0; while (old == lambdas) { ++c; if (c > 1) { cerr << "Same lambdas, repeating optimization\n"; } o->Optimize(objective, gradient, &lambdas); assert(c < 5); } old.clear(); SanityCheck(lambdas); ShowLargestFeatures(lambdas); weights.InitFromVector(lambdas); converged = o->HasConverged(); if (converged) { cerr << "OPTIMIZER REPORTS CONVERGENCE!\n"; } string fname = "weights.cur.gz"; if (converged) { fname = "weights.final.gz"; } ostringstream vv; vv << "Objective = " << objective << " (eval count=" << o->EvaluationCount() << ")"; const string svv = vv.str(); weights.WriteToFile(fname, true, &svv); } // rank == 0 int cint = converged; MPI::COMM_WORLD.Bcast(const_cast<double*>(&lambdas.data()[0]), num_feats, MPI::DOUBLE, 0); MPI::COMM_WORLD.Bcast(&cint, 1, MPI::INT, 0); MPI::COMM_WORLD.Barrier(); converged = cint; } MPI::Finalize(); return 0; }