#include <iostream> #include <cmath> #include <boost/program_options.hpp> #include <boost/program_options/variables_map.hpp> #include "m.h" #include "corpus_tools.h" #include "stringlib.h" #include "filelib.h" #include "ttables.h" #include "tdict.h" namespace po = boost::program_options; using namespace std; bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() ("iterations,i",po::value<unsigned>()->default_value(5),"Number of iterations of EM training") ("beam_threshold,t",po::value<double>()->default_value(-4),"log_10 of beam threshold (-10000 to include everything, 0 max)") ("bidir,b", "Run bidirectional alignment") ("no_null_word,N","Do not generate from the null token") ("write_alignments,A", "Write alignments instead of parameters") ("favor_diagonal,d", "Use a static alignment distribution that assigns higher probabilities to alignments near the diagonal") ("diagonal_tension,T", po::value<double>()->default_value(4.0), "How sharp or flat around the diagonal is the alignment distribution (<1 = flat >1 = sharp)") ("prob_align_null", po::value<double>()->default_value(0.08), "When --favor_diagonal is set, what's the probability of a null alignment?") ("variational_bayes,v","Add a symmetric Dirichlet prior and infer VB estimate of weights") ("testset,x", po::value<string>(), "After training completes, compute the log likelihood of this set of sentence pairs under the learned model") ("alpha,a", po::value<double>()->default_value(0.01), "Hyperparameter for optional Dirichlet prior") ("no_add_viterbi,V","Do not add Viterbi alignment points (may generate a grammar where some training sentence pairs are unreachable)"); po::options_description clo("Command line options"); clo.add_options() ("config", po::value<string>(), "Configuration file") ("help,h", "Print this help message and exit"); po::options_description dconfig_options, dcmdline_options; dconfig_options.add(opts); dcmdline_options.add(opts).add(clo); po::store(parse_command_line(argc, argv, dcmdline_options), *conf); if (conf->count("config")) { ifstream config((*conf)["config"].as<string>().c_str()); po::store(po::parse_config_file(config, dconfig_options), *conf); } po::notify(*conf); if (argc < 2 || conf->count("help")) { cerr << "Usage " << argv[0] << " [OPTIONS] corpus.fr-en\n"; cerr << dcmdline_options << endl; return false; } return true; } // src and trg are source and target strings, respectively (not really lattices) double PosteriorInference(const vector<WordID>& src, const vector<WordID>& trg) { double llh = 0; static vector<double> unnormed_a_i; if (src.size() > unnormed_a_i.size()) unnormed_a_i.resize(src.size()); return llh; } int main(int argc, char** argv) { po::variables_map conf; if (!InitCommandLine(argc, argv, &conf)) return 1; const string fname = argv[argc - 1]; const int ITERATIONS = conf["iterations"].as<unsigned>(); const double BEAM_THRESHOLD = pow(10.0, conf["beam_threshold"].as<double>()); const bool use_null = (conf.count("no_null_word") == 0); const WordID kNULL = TD::Convert("<eps>"); const bool add_viterbi = (conf.count("no_add_viterbi") == 0); const bool variational_bayes = (conf.count("variational_bayes") > 0); const bool write_alignments = (conf.count("write_alignments") > 0); const double diagonal_tension = conf["diagonal_tension"].as<double>(); const double prob_align_null = conf["prob_align_null"].as<double>(); string testset; if (conf.count("testset")) testset = conf["testset"].as<string>(); const double prob_align_not_null = 1.0 - prob_align_null; const double alpha = conf["alpha"].as<double>(); const bool favor_diagonal = conf.count("favor_diagonal"); if (variational_bayes && alpha <= 0.0) { cerr << "--alpha must be > 0\n"; return 1; } TTable s2t, t2s; TTable::Word2Word2Double s2t_viterbi; double tot_len_ratio = 0; double mean_srclen_multiplier = 0; vector<double> unnormed_a_i; for (int iter = 0; iter < ITERATIONS; ++iter) { const bool final_iteration = (iter == (ITERATIONS - 1)); cerr << "ITERATION " << (iter + 1) << (final_iteration ? " (FINAL)" : "") << endl; ReadFile rf(fname); istream& in = *rf.stream(); double likelihood = 0; double denom = 0.0; int lc = 0; bool flag = false; string line; string ssrc, strg; while(true) { getline(in, line); if (!in) break; ++lc; if (lc % 1000 == 0) { cerr << '.'; flag = true; } if (lc %50000 == 0) { cerr << " [" << lc << "]\n" << flush; flag = false; } vector<WordID> src, trg; CorpusTools::ReadLine(line, &src, &trg); if (src.size() == 0 || trg.size() == 0) { cerr << "Error: " << lc << "\n" << line << endl; return 1; } if (src.size() > unnormed_a_i.size()) unnormed_a_i.resize(src.size()); if (iter == 0) tot_len_ratio += static_cast<double>(trg.size()) / static_cast<double>(src.size()); denom += trg.size(); vector<double> probs(src.size() + 1); bool first_al = true; // used for write_alignments for (int j = 0; j < trg.size(); ++j) { const WordID& f_j = trg[j]; double sum = 0; const double j_over_ts = double(j) / trg.size(); double prob_a_i = 1.0 / (src.size() + use_null); // uniform (model 1) if (use_null) { if (favor_diagonal) prob_a_i = prob_align_null; probs[0] = s2t.prob(kNULL, f_j) * prob_a_i; sum += probs[0]; } double az = 0; if (favor_diagonal) { for (int ta = 0; ta < src.size(); ++ta) { unnormed_a_i[ta] = exp(-fabs(double(ta) / src.size() - j_over_ts) * diagonal_tension); az += unnormed_a_i[ta]; } az /= prob_align_not_null; } for (int i = 1; i <= src.size(); ++i) { if (favor_diagonal) prob_a_i = unnormed_a_i[i-1] / az; probs[i] = s2t.prob(src[i-1], f_j) * prob_a_i; sum += probs[i]; } if (final_iteration) { if (add_viterbi || write_alignments) { WordID max_i = 0; double max_p = -1; int max_index = -1; if (use_null) { max_i = kNULL; max_index = 0; max_p = probs[0]; } for (int i = 1; i <= src.size(); ++i) { if (probs[i] > max_p) { max_index = i; max_p = probs[i]; max_i = src[i-1]; } } if (write_alignments) { if (max_index > 0) { if (first_al) first_al = false; else cout << ' '; cout << (max_index - 1) << "-" << j; } } s2t_viterbi[max_i][f_j] = 1.0; } } else { if (use_null) s2t.Increment(kNULL, f_j, probs[0] / sum); for (int i = 1; i <= src.size(); ++i) s2t.Increment(src[i-1], f_j, probs[i] / sum); } likelihood += log(sum); } if (write_alignments && final_iteration) cout << endl; } // log(e) = 1.0 double base2_likelihood = likelihood / log(2); if (flag) { cerr << endl; } if (iter == 0) { mean_srclen_multiplier = tot_len_ratio / lc; cerr << "expected target length = source length * " << mean_srclen_multiplier << endl; } cerr << " log_e likelihood: " << likelihood << endl; cerr << " log_2 likelihood: " << base2_likelihood << endl; cerr << " cross entropy: " << (-base2_likelihood / denom) << endl; cerr << " perplexity: " << pow(2.0, -base2_likelihood / denom) << endl; if (!final_iteration) { if (variational_bayes) s2t.NormalizeVB(alpha); else s2t.Normalize(); } } if (testset.size()) { ReadFile rf(testset); istream& in = *rf.stream(); int lc = 0; double tlp = 0; string ssrc, strg, line; while (getline(in, line)) { ++lc; vector<WordID> src, trg; CorpusTools::ReadLine(line, &src, &trg); double log_prob = Md::log_poisson(trg.size(), 0.05 + src.size() * mean_srclen_multiplier); if (src.size() > unnormed_a_i.size()) unnormed_a_i.resize(src.size()); // compute likelihood for (int j = 0; j < trg.size(); ++j) { const WordID& f_j = trg[j]; double sum = 0; const double j_over_ts = double(j) / trg.size(); double prob_a_i = 1.0 / (src.size() + use_null); // uniform (model 1) if (use_null) { if (favor_diagonal) prob_a_i = prob_align_null; sum += s2t.prob(kNULL, f_j) * prob_a_i; } double az = 0; if (favor_diagonal) { for (int ta = 0; ta < src.size(); ++ta) { unnormed_a_i[ta] = exp(-fabs(double(ta) / src.size() - j_over_ts) * diagonal_tension); az += unnormed_a_i[ta]; } az /= prob_align_not_null; } for (int i = 1; i <= src.size(); ++i) { if (favor_diagonal) prob_a_i = unnormed_a_i[i-1] / az; sum += s2t.prob(src[i-1], f_j) * prob_a_i; } log_prob += log(sum); } tlp += log_prob; cerr << ssrc << " ||| " << strg << " ||| " << log_prob << endl; } cerr << "TOTAL LOG PROB " << tlp << endl; } if (write_alignments) return 0; for (TTable::Word2Word2Double::iterator ei = s2t.ttable.begin(); ei != s2t.ttable.end(); ++ei) { const TTable::Word2Double& cpd = ei->second; const TTable::Word2Double& vit = s2t_viterbi[ei->first]; const string& esym = TD::Convert(ei->first); double max_p = -1; for (TTable::Word2Double::const_iterator fi = cpd.begin(); fi != cpd.end(); ++fi) if (fi->second > max_p) max_p = fi->second; const double threshold = max_p * BEAM_THRESHOLD; for (TTable::Word2Double::const_iterator fi = cpd.begin(); fi != cpd.end(); ++fi) { if (fi->second > threshold || (vit.find(fi->first) != vit.end())) { cout << esym << ' ' << TD::Convert(fi->first) << ' ' << log(fi->second) << endl; } } } return 0; }