#include <sstream> #include <iostream> #include <vector> #include <cassert> #include <cmath> #include <algorithm> #include "config.h" #include <boost/shared_ptr.hpp> #include <boost/program_options.hpp> #include <boost/program_options/variables_map.hpp> #include "sentence_metadata.h" #include "scorer.h" #include "verbose.h" #include "viterbi.h" #include "hg.h" #include "prob.h" #include "kbest.h" #include "ff_register.h" #include "decoder.h" #include "filelib.h" #include "fdict.h" #include "time.h" #include "sampler.h" #include "weights.h" #include "sparse_vector.h" using namespace std; using boost::shared_ptr; namespace po = boost::program_options; bool invert_score; boost::shared_ptr<MT19937> rng; bool approx_score; bool no_reweight; bool no_select; bool unique_kbest; int update_list_size; vector<weight_t> dense_w_local; double mt_metric_scale; int optimizer; int fear_select; int hope_select; bool pseudo_doc; bool sent_approx; bool checkloss; void SanityCheck(const vector<double>& w) { for (int i = 0; i < w.size(); ++i) { assert(!isnan(w[i])); assert(!isinf(w[i])); } } struct FComp { const vector<double>& w_; FComp(const vector<double>& w) : w_(w) {} bool operator()(int a, int b) const { return fabs(w_[a]) > fabs(w_[b]); } }; void ShowLargestFeatures(const vector<double>& w) { vector<int> fnums(w.size()); for (int i = 0; i < w.size(); ++i) fnums[i] = i; vector<int>::iterator mid = fnums.begin(); mid += (w.size() > 10 ? 10 : w.size()); partial_sort(fnums.begin(), mid, fnums.end(), FComp(w)); cerr << "TOP FEATURES:"; for (vector<int>::iterator i = fnums.begin(); i != mid; ++i) { cerr << ' ' << FD::Convert(*i) << '=' << w[*i]; } cerr << endl; } bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() ("input_weights,w",po::value<string>(),"Input feature weights file") ("source,i",po::value<string>(),"Source file for development set") ("pass,p", po::value<int>()->default_value(15), "Current pass through the training data") ("reference,r",po::value<vector<string> >(), "[REQD] Reference translation(s) (tokenized text file)") ("mt_metric,m",po::value<string>()->default_value("ibm_bleu"), "Scoring metric (ibm_bleu, nist_bleu, koehn_bleu, ter, combi)") ("optimizer,o",po::value<int>()->default_value(1), "Optimizer (SGD=1, PA MIRA w/Delta=2, Cutting Plane MIRA=3, PA MIRA=4, Triple nbest list MIRA=5)") ("fear,f",po::value<int>()->default_value(1), "Fear selection (model-cost=1, maxcost=2, maxscore=3)") ("hope,h",po::value<int>()->default_value(1), "Hope selection (model+cost=1, mincost=2)") ("max_step_size,C", po::value<double>()->default_value(0.01), "regularization strength (C)") ("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)") ("mt_metric_scale,s", po::value<double>()->default_value(1.0), "Amount to scale MT loss function by") ("sent_approx,a", "Use smoothed sentence-level BLEU score for approximate scoring") ("pseudo_doc,e", "Use pseudo-document BLEU score for approximate scoring") ("no_reweight,d","Do not reweight forest for cutting plane") ("no_select,n", "Do not use selection heuristic") ("k_best_size,k", po::value<int>()->default_value(250), "Size of hypothesis list to search for oracles") ("update_k_best,b", po::value<int>()->default_value(1), "Size of good, bad lists to perform update with") ("unique_k_best,u", "Unique k-best translation list") ("weights_output,O",po::value<string>(),"Directory to write weights to") ("output_dir,D",po::value<string>(),"Directory to place output in") ("decoder_config,c",po::value<string>(),"Decoder configuration file"); po::options_description clo("Command line options"); clo.add_options() ("config", po::value<string>(), "Configuration file") ("help,H", "Print this help message and exit"); po::options_description dconfig_options, dcmdline_options; dconfig_options.add(opts); dcmdline_options.add(opts).add(clo); po::store(parse_command_line(argc, argv, dcmdline_options), *conf); if (conf->count("config")) { ifstream config((*conf)["config"].as<string>().c_str()); po::store(po::parse_config_file(config, dconfig_options), *conf); } po::notify(*conf); if (conf->count("help") || !conf->count("input_weights") || !conf->count("decoder_config") || !conf->count("reference")) { cerr << dcmdline_options << endl; return false; } return true; } //load previous translation, store array of each sentences score, subtract it from current sentence and replace with new translation score static const double kMINUS_EPSILON = -1e-6; static const double EPSILON = 0.000001; static const double SMO_EPSILON = 0.0001; static const double PSEUDO_SCALE = 0.95; static const int MAX_SMO = 10; int cur_pass; struct HypothesisInfo { SparseVector<double> features; vector<WordID> hyp; double mt_metric; double hope; double fear; double alpha; double oracle_loss; SparseVector<double> oracle_feat_diff; shared_ptr<HypothesisInfo> oracleN; }; bool ApproxEqual(double a, double b) { if (a == b) return true; return (fabs(a-b)/fabs(b)) < EPSILON; } typedef shared_ptr<HypothesisInfo> HI; bool HypothesisCompareB(const HI& h1, const HI& h2 ) { return h1->mt_metric > h2->mt_metric; }; bool HopeCompareB(const HI& h1, const HI& h2 ) { return h1->hope > h2->hope; }; bool FearCompareB(const HI& h1, const HI& h2 ) { return h1->fear > h2->fear; }; bool FearComparePred(const HI& h1, const HI& h2 ) { return h1->features.dot(dense_w_local) > h2->features.dot(dense_w_local); }; bool HypothesisCompareG(const HI& h1, const HI& h2 ) { return h1->mt_metric < h2->mt_metric; }; void CuttingPlane(vector<shared_ptr<HypothesisInfo> >* cur_c, bool* again, vector<shared_ptr<HypothesisInfo> >& all_hyp, vector<weight_t> dense_weights) { bool DEBUG_CUT = false; shared_ptr<HypothesisInfo> max_fear, max_fear_in_set; vector<shared_ptr<HypothesisInfo> >& cur_constraint = *cur_c; if(no_reweight) { //find new hope hypothesis for(int u=0;u!=all_hyp.size();u++) { double t_score = all_hyp[u]->features.dot(dense_weights); all_hyp[u]->hope = 1 * all_hyp[u]->mt_metric + t_score; } //sort hyps by hope score sort(all_hyp.begin(),all_hyp.end(),HopeCompareB); double hope_score = all_hyp[0]->features.dot(dense_weights); if(DEBUG_CUT) cerr << "New hope derivation score " << hope_score << endl; for(int u=0;u!=all_hyp.size();u++) { double t_score = all_hyp[u]->features.dot(dense_weights); all_hyp[u]->fear = -1*all_hyp[u]->mt_metric + 1*all_hyp[0]->mt_metric - hope_score + t_score; //relative loss } sort(all_hyp.begin(),all_hyp.end(),FearCompareB); } //assign maximum fear derivation from all derivations max_fear = all_hyp[0]; if(DEBUG_CUT) cerr <<"Cutting Plane Max Fear "<<max_fear->fear ; for(int i=0; i < cur_constraint.size();i++) //select maximal violator already in constraint set { if (!max_fear_in_set || cur_constraint[i]->fear > max_fear_in_set->fear) max_fear_in_set = cur_constraint[i]; } if(DEBUG_CUT) cerr << "Max Fear in constraint set " << max_fear_in_set->fear << endl; if(max_fear->fear > max_fear_in_set->fear + SMO_EPSILON) { cur_constraint.push_back(max_fear); *again = true; if(DEBUG_CUT) cerr << "Optimize Again " << *again << endl; } } double ComputeDelta(vector<shared_ptr<HypothesisInfo> >* cur_p, double max_step_size,vector<weight_t> dense_weights ) { vector<shared_ptr<HypothesisInfo> >& cur_pair = *cur_p; double loss = cur_pair[0]->oracle_loss - cur_pair[1]->oracle_loss; double margin = -(cur_pair[0]->oracleN->features.dot(dense_weights)- cur_pair[0]->features.dot(dense_weights)) + (cur_pair[1]->oracleN->features.dot(dense_weights) - cur_pair[1]->features.dot(dense_weights)); const double num = margin + loss; cerr << "LOSS: " << num << " Margin:" << margin << " BLEUL:" << loss << " " << cur_pair[1]->features.dot(dense_weights) << " " << cur_pair[0]->features.dot(dense_weights) <<endl; SparseVector<double> diff = cur_pair[0]->features; diff -= cur_pair[1]->features; double diffsqnorm = diff.l2norm_sq(); double delta; if (diffsqnorm > 0) delta = num / (diffsqnorm * max_step_size); else delta = 0; cerr << " D1:" << delta; //clip delta (enforce margin constraints) delta = max(-cur_pair[0]->alpha, min(delta, cur_pair[1]->alpha)); cerr << " D2:" << delta; return delta; } vector<shared_ptr<HypothesisInfo> > SelectPair(vector<shared_ptr<HypothesisInfo> >* cur_c) { bool DEBUG_SELECT= false; vector<shared_ptr<HypothesisInfo> >& cur_constraint = *cur_c; vector<shared_ptr<HypothesisInfo> > pair; if (no_select || optimizer == 2){ //skip heuristic search and return oracle and fear for pa-mira pair.push_back(cur_constraint[0]); pair.push_back(cur_constraint[1]); return pair; } for(int u=0;u != cur_constraint.size();u++) { shared_ptr<HypothesisInfo> max_fear; if(DEBUG_SELECT) cerr<< "cur alpha " << u << " " << cur_constraint[u]->alpha; for(int i=0; i < cur_constraint.size();i++) //select maximal violator { if(i != u) if (!max_fear || cur_constraint[i]->fear > max_fear->fear) max_fear = cur_constraint[i]; } if(!max_fear) return pair; // if ((cur_constraint[u]->alpha == 0) && (cur_constraint[u]->fear > max_fear->fear + SMO_EPSILON)) { for(int i=0; i < cur_constraint.size();i++) //select maximal violator { if(i != u) if (cur_constraint[i]->alpha > 0) { pair.push_back(cur_constraint[u]); pair.push_back(cur_constraint[i]); return pair; } } } if ((cur_constraint[u]->alpha > 0) && (cur_constraint[u]->fear < max_fear->fear - SMO_EPSILON)) { for(int i=0; i < cur_constraint.size();i++) //select maximal violator { if(i != u) if (cur_constraint[i]->fear > cur_constraint[u]->fear) { pair.push_back(cur_constraint[u]); pair.push_back(cur_constraint[i]); return pair; } } } } return pair; //no more constraints to optimize, we're done here } struct GoodBadOracle { vector<shared_ptr<HypothesisInfo> > good; vector<shared_ptr<HypothesisInfo> > bad; }; struct TrainingObserver : public DecoderObserver { TrainingObserver(const int k, const DocScorer& d, vector<GoodBadOracle>* o, vector<ScoreP>* cbs) : ds(d), oracles(*o), corpus_bleu_sent_stats(*cbs), kbest_size(k) { if(!pseudo_doc && !sent_approx) if(cur_pass > 0) //calculate corpus bleu score from previous iterations 1-best for BLEU gain { ScoreP acc; for (int ii = 0; ii < corpus_bleu_sent_stats.size(); ii++) { if (!acc) { acc = corpus_bleu_sent_stats[ii]->GetZero(); } acc->PlusEquals(*corpus_bleu_sent_stats[ii]); } corpus_bleu_stats = acc; corpus_bleu_score = acc->ComputeScore(); } } const DocScorer& ds; vector<ScoreP>& corpus_bleu_sent_stats; vector<GoodBadOracle>& oracles; vector<shared_ptr<HypothesisInfo> > cur_best; shared_ptr<HypothesisInfo> cur_oracle; const int kbest_size; Hypergraph forest; int cur_sent; ScoreP corpus_bleu_stats; float corpus_bleu_score; float corpus_src_length; float curr_src_length; const int GetCurrentSent() const { return cur_sent; } const HypothesisInfo& GetCurrentBestHypothesis() const { return *cur_best[0]; } const vector<shared_ptr<HypothesisInfo> > GetCurrentBest() const { return cur_best; } const HypothesisInfo& GetCurrentOracle() const { return *cur_oracle; } const Hypergraph& GetCurrentForest() const { return forest; } virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) { cur_sent = smeta.GetSentenceID(); curr_src_length = (float) smeta.GetSourceLength(); if(unique_kbest) UpdateOracles<KBest::FilterUnique>(smeta.GetSentenceID(), *hg); else UpdateOracles<KBest::NoFilter<std::vector<WordID> > >(smeta.GetSentenceID(), *hg); forest = *hg; } shared_ptr<HypothesisInfo> MakeHypothesisInfo(const SparseVector<double>& feats, const double score, const vector<WordID>& hyp) { shared_ptr<HypothesisInfo> h(new HypothesisInfo); h->features = feats; h->mt_metric = score; h->hyp = hyp; return h; } template <class Filter> void UpdateOracles(int sent_id, const Hypergraph& forest) { bool PRINT_LIST= false; vector<shared_ptr<HypothesisInfo> >& cur_good = oracles[sent_id].good; vector<shared_ptr<HypothesisInfo> >& cur_bad = oracles[sent_id].bad; //TODO: look at keeping previous iterations hypothesis lists around cur_best.clear(); cur_good.clear(); cur_bad.clear(); vector<shared_ptr<HypothesisInfo> > all_hyp; typedef KBest::KBestDerivations<vector<WordID>, ESentenceTraversal,Filter> K; K kbest(forest,kbest_size); for (int i = 0; i < kbest_size; ++i) { typename K::Derivation *d = kbest.LazyKthBest(forest.nodes_.size() - 1, i); if (!d) break; float sentscore; if(cur_pass > 0 && !pseudo_doc && !sent_approx) { ScoreP sent_stats = ds[sent_id]->ScoreCandidate(d->yield); ScoreP corpus_no_best = corpus_bleu_stats->GetZero(); corpus_bleu_stats->Subtract(*corpus_bleu_sent_stats[sent_id], &*corpus_no_best); sent_stats->PlusEquals(*corpus_no_best, 0.5); //compute gain from new sentence in 1-best corpus sentscore = mt_metric_scale * (sent_stats->ComputeScore() - corpus_no_best->ComputeScore());// - corpus_bleu_score); } else if(pseudo_doc) //pseudo-corpus smoothing { float src_scale = corpus_src_length + curr_src_length; ScoreP sent_stats = ds[sent_id]->ScoreCandidate(d->yield); if(!corpus_bleu_stats){ corpus_bleu_stats = sent_stats->GetZero();} sent_stats->PlusEquals(*corpus_bleu_stats); sentscore = mt_metric_scale * src_scale * sent_stats->ComputeScore(); } else //use sentence-level smoothing ( used when cur_pass=0 if not pseudo_doc) { sentscore = mt_metric_scale * (ds[sent_id]->ScoreCandidate(d->yield)->ComputeScore()); } if (invert_score) sentscore *= -1.0; if (i < update_list_size){ if(PRINT_LIST)cerr << TD::GetString(d->yield) << " ||| " << d->score << " ||| " << sentscore << endl; cur_best.push_back( MakeHypothesisInfo(d->feature_values, sentscore, d->yield)); } all_hyp.push_back(MakeHypothesisInfo(d->feature_values, sentscore,d->yield)); //store all hyp to extract hope and fear } if(pseudo_doc){ //update psuedo-doc stats string details, details2; corpus_bleu_stats->ScoreDetails(&details2); ScoreP sent_stats = ds[sent_id]->ScoreCandidate(cur_best[0]->hyp); corpus_bleu_stats->PlusEquals(*sent_stats); sent_stats->ScoreDetails(&details); sent_stats = corpus_bleu_stats; corpus_bleu_stats = sent_stats->GetZero(); corpus_bleu_stats->PlusEquals(*sent_stats, PSEUDO_SCALE); corpus_src_length = PSEUDO_SCALE * (corpus_src_length + curr_src_length); cerr << "ps corpus size: " << corpus_src_length << " " << curr_src_length << "\n" << details << "\n" << details2 << endl; } //figure out how many hyps we can keep maximum int temp_update_size = update_list_size; if (all_hyp.size() < update_list_size){ temp_update_size = all_hyp.size();} //sort all hyps by sentscore (eg. bleu) sort(all_hyp.begin(),all_hyp.end(),HypothesisCompareB); if(PRINT_LIST){ cerr << "Sorting " << endl; for(int u=0;u!=all_hyp.size();u++) cerr << all_hyp[u]->mt_metric << " " << all_hyp[u]->features.dot(dense_w_local) << endl; } if(hope_select == 1) { //find hope hypothesis using model + bleu if (PRINT_LIST) cerr << "HOPE " << endl; for(int u=0;u!=all_hyp.size();u++) { double t_score = all_hyp[u]->features.dot(dense_w_local); all_hyp[u]->hope = all_hyp[u]->mt_metric + t_score; if (PRINT_LIST) cerr << all_hyp[u]->mt_metric << " H:" << all_hyp[u]->hope << " S:" << t_score << endl; } //sort hyps by hope score sort(all_hyp.begin(),all_hyp.end(),HopeCompareB); } //assign cur_good the sorted list cur_good.insert(cur_good.begin(), all_hyp.begin(), all_hyp.begin()+temp_update_size); if(PRINT_LIST) { cerr << "GOOD" << endl; for(int u=0;u!=cur_good.size();u++) cerr << cur_good[u]->mt_metric << " " << cur_good[u]->hope << endl;} //use hope for fear selection shared_ptr<HypothesisInfo>& oracleN = cur_good[0]; if(fear_select == 1){ //compute fear hyps with model - bleu if (PRINT_LIST) cerr << "FEAR " << endl; double hope_score = oracleN->features.dot(dense_w_local); if (PRINT_LIST) cerr << "hope score " << hope_score << endl; for(int u=0;u!=all_hyp.size();u++) { double t_score = all_hyp[u]->features.dot(dense_w_local); all_hyp[u]->fear = -1*all_hyp[u]->mt_metric + 1*oracleN->mt_metric - hope_score + t_score; //relative loss all_hyp[u]->oracle_loss = -1*all_hyp[u]->mt_metric + 1*oracleN->mt_metric; all_hyp[u]->oracle_feat_diff = oracleN->features - all_hyp[u]->features; all_hyp[u]->oracleN=oracleN; if (PRINT_LIST) cerr << all_hyp[u]->mt_metric << " H:" << all_hyp[u]->hope << " F:" << all_hyp[u]->fear << endl; } sort(all_hyp.begin(),all_hyp.end(),FearCompareB); } else if(fear_select == 2) //select fear based on cost { sort(all_hyp.begin(),all_hyp.end(),HypothesisCompareG); } else //max model score, also known as prediction-based { sort(all_hyp.begin(),all_hyp.end(),FearComparePred); } cur_bad.insert(cur_bad.begin(), all_hyp.begin(), all_hyp.begin()+temp_update_size); if(PRINT_LIST){ cerr<< "BAD"<<endl; for(int u=0;u!=cur_bad.size();u++) cerr << cur_bad[u]->mt_metric << " H:" << cur_bad[u]->hope << " F:" << cur_bad[u]->fear << endl;} cerr << "GOOD (BEST): " << cur_good[0]->mt_metric << endl; cerr << " CUR: " << cur_best[0]->mt_metric << endl; cerr << " BAD (WORST): " << cur_bad[0]->mt_metric << endl; } }; void ReadTrainingCorpus(const string& fname, vector<string>* c) { ReadFile rf(fname); istream& in = *rf.stream(); string line; while(in) { getline(in, line); if (!in) break; c->push_back(line); } } void ReadPastTranslationForScore(const int cur_pass, vector<ScoreP>* c, DocScorer& ds, const string& od) { cerr << "Reading BLEU gain file "; string fname; if(cur_pass == 0) { fname = od + "/run.raw.init"; } else { int last_pass = cur_pass - 1; fname = od + "/run.raw." + boost::lexical_cast<std::string>(last_pass) + ".B"; } cerr << fname << "\n"; ReadFile rf(fname); istream& in = *rf.stream(); ScoreP acc; string line; int lc = 0; while(in) { getline(in, line); if (line.empty() && !in) break; vector<WordID> sent; TD::ConvertSentence(line, &sent); ScoreP sentscore = ds[lc]->ScoreCandidate(sent); c->push_back(sentscore); if (!acc) { acc = sentscore->GetZero(); } acc->PlusEquals(*sentscore); ++lc; } assert(lc > 0); float score = acc->ComputeScore(); string details; acc->ScoreDetails(&details); cerr << "Previous run: " << details << score << endl; } int main(int argc, char** argv) { register_feature_functions(); SetSilent(true); // turn off verbose decoder output po::variables_map conf; if (!InitCommandLine(argc, argv, &conf)) return 1; if (conf.count("random_seed")) rng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); else rng.reset(new MT19937); vector<string> corpus; const string metric_name = conf["mt_metric"].as<string>(); optimizer = conf["optimizer"].as<int>(); fear_select = conf["fear"].as<int>(); hope_select = conf["hope"].as<int>(); mt_metric_scale = conf["mt_metric_scale"].as<double>(); approx_score = conf.count("approx_score"); no_reweight = conf.count("no_reweight"); no_select = conf.count("no_select"); update_list_size = conf["update_k_best"].as<int>(); unique_kbest = conf.count("unique_k_best"); pseudo_doc = conf.count("pseudo_doc"); sent_approx = conf.count("sent_approx"); cerr << "Using pseudo-doc:" << pseudo_doc << " Sent:" << sent_approx << endl; if(pseudo_doc) mt_metric_scale=1; const string weights_dir = conf["weights_output"].as<string>(); const string output_dir = conf["output_dir"].as<string>(); ScoreType type = ScoreTypeFromString(metric_name); //establish metric used for tuning if (type == TER) { invert_score = true; } else { invert_score = false; } //load references DocScorer ds(type, conf["reference"].as<vector<string> >(), ""); cerr << "Loaded " << ds.size() << " references for scoring with " << metric_name << endl; vector<ScoreP> corpus_bleu_sent_stats; //check training pass,if >0, then use previous iterations corpus bleu stats cur_pass = conf["pass"].as<int>(); if(cur_pass > 0) { ReadPastTranslationForScore(cur_pass, &corpus_bleu_sent_stats, ds, output_dir); } cerr << "Using optimizer:" << optimizer << endl; ReadFile ini_rf(conf["decoder_config"].as<string>()); Decoder decoder(ini_rf.stream()); vector<weight_t>& dense_weights = decoder.CurrentWeightVector(); SparseVector<weight_t> lambdas; Weights::InitFromFile(conf["input_weights"].as<string>(), &dense_weights); Weights::InitSparseVector(dense_weights, &lambdas); const string input = decoder.GetConf()["input"].as<string>(); if (!SILENT) cerr << "Reading input from " << ((input == "-") ? "STDIN" : input.c_str()) << endl; ReadFile in_read(input); istream *in = in_read.stream(); assert(*in); string buf; const double max_step_size = conf["max_step_size"].as<double>(); vector<GoodBadOracle> oracles(ds.size()); TrainingObserver observer(conf["k_best_size"].as<int>(), ds, &oracles, &corpus_bleu_sent_stats); int cur_sent = 0; int lcount = 0; double objective=0; double tot_loss = 0; int dots = 0; SparseVector<double> tot; SparseVector<double> final_tot; SparseVector<double> old_lambdas = lambdas; tot.clear(); tot += lambdas; cerr << "PASS " << cur_pass << " " << endl << lambdas << endl; ScoreP acc, acc_h, acc_f; while(*in) { getline(*in, buf); if (buf.empty()) continue; //TODO: allow batch updating lambdas.init_vector(&dense_weights); dense_w_local = dense_weights; decoder.SetId(cur_sent); decoder.Decode(buf, &observer); // decode the sentence, calling Notify to get the hope,fear, and model best hyps. cur_sent = observer.GetCurrentSent(); cerr << "SENT: " << cur_sent << endl; const HypothesisInfo& cur_hyp = observer.GetCurrentBestHypothesis(); const HypothesisInfo& cur_good = *oracles[cur_sent].good[0]; const HypothesisInfo& cur_bad = *oracles[cur_sent].bad[0]; vector<shared_ptr<HypothesisInfo> >& cur_good_v = oracles[cur_sent].good; vector<shared_ptr<HypothesisInfo> >& cur_bad_v = oracles[cur_sent].bad; vector<shared_ptr<HypothesisInfo> > cur_best_v = observer.GetCurrentBest(); tot_loss += cur_hyp.mt_metric; //score hyps to be able to compute corpus level bleu after we finish this iteration through the corpus ScoreP sentscore = ds[cur_sent]->ScoreCandidate(cur_hyp.hyp); if (!acc) { acc = sentscore->GetZero(); } acc->PlusEquals(*sentscore); ScoreP hope_sentscore = ds[cur_sent]->ScoreCandidate(cur_good.hyp); if (!acc_h) { acc_h = hope_sentscore->GetZero(); } acc_h->PlusEquals(*hope_sentscore); ScoreP fear_sentscore = ds[cur_sent]->ScoreCandidate(cur_bad.hyp); if (!acc_f) { acc_f = fear_sentscore->GetZero(); } acc_f->PlusEquals(*fear_sentscore); if(optimizer == 4) { //passive-aggresive update (single dual coordinate step) double margin = cur_bad.features.dot(dense_weights) - cur_good.features.dot(dense_weights); double mt_loss = (cur_good.mt_metric - cur_bad.mt_metric); const double loss = margin + mt_loss; cerr << "LOSS: " << loss << " Margin:" << margin << " BLEUL:" << mt_loss << " " << cur_bad.features.dot(dense_weights) << " " << cur_good.features.dot(dense_weights) <<endl; if (loss > 0.0 || !checkloss) { SparseVector<double> diff = cur_good.features; diff -= cur_bad.features; double diffsqnorm = diff.l2norm_sq(); double delta; if (diffsqnorm > 0) delta = loss / (diffsqnorm); else delta = 0; if (delta > max_step_size) delta = max_step_size; lambdas += (cur_good.features * delta); lambdas -= (cur_bad.features * delta); } } else if(optimizer == 1) //sgd - nonadapted step size { lambdas += (cur_good.features) * max_step_size; lambdas -= (cur_bad.features) * max_step_size; } else if(optimizer == 5) //full mira with n-best list of constraints from hope, fear, model best { vector<shared_ptr<HypothesisInfo> > cur_constraint; cur_constraint.insert(cur_constraint.begin(), cur_bad_v.begin(), cur_bad_v.end()); cur_constraint.insert(cur_constraint.begin(), cur_best_v.begin(), cur_best_v.end()); cur_constraint.insert(cur_constraint.begin(), cur_good_v.begin(), cur_good_v.end()); bool optimize_again; vector<shared_ptr<HypothesisInfo> > cur_pair; //SMO for(int u=0;u!=cur_constraint.size();u++) cur_constraint[u]->alpha =0; cur_constraint[0]->alpha =1; //set oracle to alpha=1 cerr <<"Optimizing with " << cur_constraint.size() << " constraints" << endl; int smo_iter = MAX_SMO, smo_iter2 = MAX_SMO; int iter, iter2 =0; bool DEBUG_SMO = false; while (iter2 < smo_iter2) { iter =0; while (iter < smo_iter) { optimize_again = true; for (int i = 0; i< cur_constraint.size(); i++) for (int j = i+1; j< cur_constraint.size(); j++) { if(DEBUG_SMO) cerr << "start " << i << " " << j << endl; cur_pair.clear(); cur_pair.push_back(cur_constraint[j]); cur_pair.push_back(cur_constraint[i]); double delta = ComputeDelta(&cur_pair,max_step_size, dense_weights); if (delta == 0) optimize_again = false; cur_constraint[j]->alpha += delta; cur_constraint[i]->alpha -= delta; double step_size = delta * max_step_size; lambdas += (cur_constraint[i]->features) * step_size; lambdas -= (cur_constraint[j]->features) * step_size; if(DEBUG_SMO) cerr << "SMO opt " << iter << " " << i << " " << j << " " << delta << " " << cur_pair[0]->alpha << " " << cur_pair[1]->alpha << endl; } iter++; if(!optimize_again) { iter = MAX_SMO; cerr << "Optimization stopped, delta =0" << endl; } } iter2++; } } else if(optimizer == 2 || optimizer == 3) //PA and Cutting Plane MIRA update { bool DEBUG_SMO= true; vector<shared_ptr<HypothesisInfo> > cur_constraint; cur_constraint.push_back(cur_good_v[0]); //add oracle to constraint set bool optimize_again = true; int cut_plane_calls = 0; while (optimize_again) { if(DEBUG_SMO) cerr<< "optimize again: " << optimize_again << endl; if(optimizer == 2){ //PA cur_constraint.push_back(cur_bad_v[0]); //check if we have a violation if(!(cur_constraint[1]->fear > cur_constraint[0]->fear + SMO_EPSILON)) { optimize_again = false; cerr << "Constraint not violated" << endl; } } else { //cutting plane to add constraints if(DEBUG_SMO) cerr<< "Cutting Plane " << cut_plane_calls << " with " << lambdas << endl; optimize_again = false; cut_plane_calls++; CuttingPlane(&cur_constraint, &optimize_again, oracles[cur_sent].bad, dense_weights); if (cut_plane_calls >= MAX_SMO) optimize_again = false; } if(optimize_again) { //SMO for(int u=0;u!=cur_constraint.size();u++) { cur_constraint[u]->alpha =0; } cur_constraint[0]->alpha = 1; cerr <<" Optimizing with " << cur_constraint.size() << " constraints" << endl; int smo_iter = MAX_SMO; int iter =0; while (iter < smo_iter) { //select pair to optimize from constraint set vector<shared_ptr<HypothesisInfo> > cur_pair = SelectPair(&cur_constraint); if(cur_pair.empty()){ iter=MAX_SMO; cerr << "Undefined pair " << endl; continue; } //pair is undefined so we are done with this smo double delta = ComputeDelta(&cur_pair,max_step_size, dense_weights); cur_pair[0]->alpha += delta; cur_pair[1]->alpha -= delta; double step_size = delta * max_step_size; cerr << "step " << step_size << endl; lambdas += (cur_pair[1]->features) * step_size; lambdas -= (cur_pair[0]->features) * step_size; cerr << " Lambdas " << lambdas << endl; //reload weights based on update dense_weights.clear(); lambdas.init_vector(&dense_weights); dense_w_local = dense_weights; iter++; if(DEBUG_SMO) cerr << "SMO opt " << iter << " " << delta << " " << cur_pair[0]->alpha << " " << cur_pair[1]->alpha << endl; if(no_select) //don't use selection heuristic to determine when to stop SMO, rather just when delta =0 if (delta == 0) iter = MAX_SMO; //only perform one dual coordinate ascent step if(optimizer == 2) { optimize_again = false; iter = MAX_SMO; } } if(optimizer == 3) { if(!no_reweight) //reweight the forest and select a new k-best { if(DEBUG_SMO) cerr<< "Decoding with new weights -- now orac are " << oracles[cur_sent].good.size() << endl; Hypergraph hg = observer.GetCurrentForest(); hg.Reweight(dense_weights); if(unique_kbest) observer.UpdateOracles<KBest::FilterUnique>(cur_sent, hg); else observer.UpdateOracles<KBest::NoFilter<std::vector<WordID> > >(cur_sent, hg); } } } } //print objective after this sentence double lambda_change = (lambdas - old_lambdas).l2norm_sq(); double max_fear = cur_constraint[cur_constraint.size()-1]->fear; double temp_objective = 0.5 * lambda_change;// + max_step_size * max_fear; for(int u=0;u!=cur_constraint.size();u++) { cerr << cur_constraint[u]->alpha << " " << cur_constraint[u]->hope << " " << cur_constraint[u]->fear << endl; temp_objective += cur_constraint[u]->alpha * cur_constraint[u]->fear; } objective += temp_objective; cerr << "SENT OBJ: " << temp_objective << " NEW OBJ: " << objective << endl; } if ((cur_sent * 40 / ds.size()) > dots) { ++dots; cerr << '.'; } tot += lambdas; ++lcount; cur_sent++; cout << TD::GetString(cur_good_v[0]->hyp) << " ||| " << TD::GetString(cur_best_v[0]->hyp) << " ||| " << TD::GetString(cur_bad_v[0]->hyp) << endl; } cerr << "FINAL OBJECTIVE: "<< objective << endl; final_tot += tot; cerr << "Translated " << lcount << " sentences " << endl; cerr << " [AVG METRIC LAST PASS=" << (tot_loss / lcount) << "]\n"; tot_loss = 0; int node_id = rng->next() * 100000; cerr << " Writing weights to " << node_id << endl; Weights::ShowLargestFeatures(dense_weights); dots = 0; ostringstream os; os << weights_dir << "/weights.mira-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << "." << node_id << ".gz"; string msg = "# MIRA tuned weights ||| " + boost::lexical_cast<std::string>(node_id) + " ||| " + boost::lexical_cast<std::string>(lcount); lambdas.init_vector(&dense_weights); Weights::WriteToFile(os.str(), dense_weights, true, &msg); SparseVector<double> x = tot; x /= lcount+1; ostringstream sa; string msga = "# MIRA tuned weights AVERAGED ||| " + boost::lexical_cast<std::string>(node_id) + " ||| " + boost::lexical_cast<std::string>(lcount); sa << weights_dir << "/weights.mira-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << "." << node_id << "-avg.gz"; x.init_vector(&dense_weights); Weights::WriteToFile(sa.str(), dense_weights, true, &msga); cerr << "Optimization complete.\n"; return 0; }