#include <sstream> #include <iostream> #include <fstream> #include <vector> #include <cassert> #include <cmath> #include <tr1/memory> #include <boost/program_options.hpp> #include <boost/program_options/variables_map.hpp> #include "verbose.h" #include "hg.h" #include "prob.h" #include "inside_outside.h" #include "ff_register.h" #include "decoder.h" #include "filelib.h" #include "online_optimizer.h" #include "fdict.h" #include "weights.h" #include "sparse_vector.h" #include "sampler.h" #ifdef HAVE_MPI #include <boost/mpi/timer.hpp> #include <boost/mpi.hpp> namespace mpi = boost::mpi; #endif using namespace std; namespace po = boost::program_options; struct FComp { const vector<double>& w_; FComp(const vector<double>& w) : w_(w) {} bool operator()(int a, int b) const { return fabs(w_[a]) > fabs(w_[b]); } }; void ShowFeatures(const vector<double>& w) { vector<int> fnums(w.size()); for (int i = 0; i < w.size(); ++i) fnums[i] = i; sort(fnums.begin(), fnums.end(), FComp(w)); for (vector<int>::iterator i = fnums.begin(); i != fnums.end(); ++i) { if (w[*i]) cout << FD::Convert(*i) << ' ' << w[*i] << endl; } } void ReadConfig(const string& ini, vector<string>* out) { ReadFile rf(ini); istream& in = *rf.stream(); while(in) { string line; getline(in, line); if (!in) continue; out->push_back(line); } } void StoreConfig(const vector<string>& cfg, istringstream* o) { ostringstream os; for (int i = 0; i < cfg.size(); ++i) { os << cfg[i] << endl; } o->str(os.str()); } bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() ("input,i",po::value<string>(),"Corpus of source language sentences") ("weights,w",po::value<string>(),"Input feature weights file") ("decoder_config,c",po::value<string>(), "cdec.ini file"); po::options_description clo("Command line options"); clo.add_options() ("config", po::value<string>(), "Configuration file") ("help,h", "Print this help message and exit"); po::options_description dconfig_options, dcmdline_options; dconfig_options.add(opts); dcmdline_options.add(opts).add(clo); po::store(parse_command_line(argc, argv, dcmdline_options), *conf); if (conf->count("config")) { ifstream config((*conf)["config"].as<string>().c_str()); po::store(po::parse_config_file(config, dconfig_options), *conf); } po::notify(*conf); if (conf->count("help") || !conf->count("input") || !conf->count("decoder_config")) { cerr << dcmdline_options << endl; return false; } return true; } void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c, vector<int>* order) { ReadFile rf(fname); istream& in = *rf.stream(); string line; int id = 0; while(in) { getline(in, line); if (!in) break; if (id % size == rank) { c->push_back(line); order->push_back(id); } ++id; } } static const double kMINUS_EPSILON = -1e-6; struct TrainingObserver : public DecoderObserver { void Reset() { acc_exp.clear(); total_complete = 0; } virtual void NotifyDecodingStart(const SentenceMetadata& smeta) { cur_model_exp.clear(); state = 1; } // compute model expectations, denominator of objective virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) { assert(state == 1); state = 2; const prob_t z = InsideOutside<prob_t, EdgeProb, SparseVector<prob_t>, EdgeFeaturesAndProbWeightFunction>(*hg, &cur_model_exp); cur_model_exp /= z; acc_exp += cur_model_exp; } virtual void NotifyAlignmentForest(const SentenceMetadata& smeta, Hypergraph* hg) { cerr << "IGNORING ALIGNMENT FOREST!\n"; } virtual void NotifyDecodingComplete(const SentenceMetadata& smeta) { if (state == 2) { ++total_complete; } } void GetExpectations(SparseVector<double>* g) const { g->clear(); for (SparseVector<prob_t>::const_iterator it = acc_exp.begin(); it != acc_exp.end(); ++it) g->set_value(it->first, it->second); } int total_complete; SparseVector<prob_t> cur_model_exp; SparseVector<prob_t> acc_exp; int state; }; #ifdef HAVE_MPI namespace boost { namespace mpi { template<> struct is_commutative<std::plus<SparseVector<double> >, SparseVector<double> > : mpl::true_ { }; } } // end namespace boost::mpi #endif int main(int argc, char** argv) { #ifdef HAVE_MPI mpi::environment env(argc, argv); mpi::communicator world; const int size = world.size(); const int rank = world.rank(); #else const int size = 1; const int rank = 0; #endif if (size > 1) SetSilent(true); // turn off verbose decoder output register_feature_functions(); po::variables_map conf; if (!InitCommandLine(argc, argv, &conf)) return 1; // load initial weights Weights weights; if (conf.count("weights")) weights.InitFromFile(conf["weights"].as<string>()); vector<string> corpus; vector<int> ids; ReadTrainingCorpus(conf["input"].as<string>(), rank, size, &corpus, &ids); assert(corpus.size() > 0); vector<string> cdec_ini; ReadConfig(conf["decoder_config"].as<string>(), &cdec_ini); istringstream ini; StoreConfig(cdec_ini, &ini); Decoder decoder(&ini); if (decoder.GetConf()["input"].as<string>() != "-") { cerr << "cdec.ini must not set an input file\n"; return 1; } SparseVector<double> x; weights.InitSparseVector(&x); TrainingObserver observer; weights.InitFromVector(x); vector<double> lambdas; weights.InitVector(&lambdas); decoder.SetWeights(lambdas); observer.Reset(); for (unsigned i = 0; i < corpus.size(); ++i) { int id = ids[i]; decoder.SetId(id); decoder.Decode(corpus[i], &observer); } SparseVector<double> local_exps, exps; observer.GetExpectations(&local_exps); #ifdef HAVE_MPI reduce(world, local_exps, exps, std::plus<SparseVector<double> >(), 0); #else exps.swap(local_exps); #endif weights.InitFromVector(exps); weights.InitVector(&lambdas); ShowFeatures(lambdas); return 0; }