#ifndef _DTRAIN_PAIRSAMPLING_H_ #define _DTRAIN_PAIRSAMPLING_H_ namespace dtrain { bool accept_pair(score_t a, score_t b, score_t threshold) { if (fabs(a - b) < threshold) return false; return true; } bool cmp_hyp_by_score_d(ScoredHyp a, ScoredHyp b) { return a.score > b.score; } inline void all_pairs(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool misranked_only, float _unused=1) { sort(s->begin(), s->end(), cmp_hyp_by_score_d); unsigned sz = s->size(); bool b = false; unsigned count = 0; for (unsigned i = 0; i < sz-1; i++) { for (unsigned j = i+1; j < sz; j++) { if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue; if (threshold > 0) { if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) training.push_back(make_pair((*s)[i], (*s)[j])); } else { if ((*s)[i].score != (*s)[j].score) training.push_back(make_pair((*s)[i], (*s)[j])); } if (++count == max) { b = true; break; } } if (b) break; } } /* * multipartite ranking * sort (descending) by bleu * compare top X to middle Y and low X * cmp middle Y to low X */ inline void partXYX(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool misranked_only, float hi_lo) { unsigned sz = s->size(); if (sz < 2) return; sort(s->begin(), s->end(), cmp_hyp_by_score_d); unsigned sep = round(sz*hi_lo); unsigned sep_hi = sep; if (sz > 4) while (sep_hi < sz && (*s)[sep_hi-1].score == (*s)[sep_hi].score) ++sep_hi; else sep_hi = 1; bool b = false; unsigned count = 0; for (unsigned i = 0; i < sep_hi; i++) { for (unsigned j = sep_hi; j < sz; j++) { if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue; if (threshold > 0) { if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) training.push_back(make_pair((*s)[i], (*s)[j])); } else { if ((*s)[i].score != (*s)[j].score) training.push_back(make_pair((*s)[i], (*s)[j])); } if (++count == max) { b = true; break; } } if (b) break; } unsigned sep_lo = sz-sep; while (sep_lo > 0 && (*s)[sep_lo-1].score == (*s)[sep_lo].score) --sep_lo; for (unsigned i = sep_hi; i < sz-sep_lo; i++) { for (unsigned j = sz-sep_lo; j < sz; j++) { if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue; if (threshold > 0) { if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) training.push_back(make_pair((*s)[i], (*s)[j])); } else { if ((*s)[i].score != (*s)[j].score) training.push_back(make_pair((*s)[i], (*s)[j])); } if (++count == max) return; } } } /* * pair sampling as in * 'Tuning as Ranking' (Hopkins & May, 2011) * count = 5000 * threshold = 5% BLEU (0.05 for param 3) * cut = top 50 */ bool _PRO_cmp_pair_by_diff_d(pair<ScoredHyp,ScoredHyp> a, pair<ScoredHyp,ScoredHyp> b) { return (fabs(a.first.score - a.second.score)) > (fabs(b.first.score - b.second.score)); } inline void PROsampling(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool _unused=false, float _also_unused=0) { sort(s->begin(), s->end(), cmp_hyp_by_score_d); unsigned max_count = 5000, count = 0, sz = s->size(); bool b = false; for (unsigned i = 0; i < sz-1; i++) { for (unsigned j = i+1; j < sz; j++) { if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) { training.push_back(make_pair((*s)[i], (*s)[j])); if (++count == max_count) { b = true; break; } } } if (b) break; } if (training.size() > 50) { sort(training.begin(), training.end(), _PRO_cmp_pair_by_diff_d); training.erase(training.begin()+50, training.end()); } return; } } // namespace #endif