# lplp.rb # norms def l0(feature_column, n) if feature_column.size >= n then return 1 else return 0 end end def l1(feature_column, n=-1) return feature_column.map { |i| i.abs }.reduce { |sum,i| sum+i } end def l2(feature_column, n=-1) return Math.sqrt feature_column.map { |i| i.abs2 }.reduce { |sum,i| sum+i } end def linfty(feature_column, n=-1) return feature_column.map { |i| i.abs }.max end # stats def median(feature_column, n) return feature_column.concat(0.step(n-feature_column.size-1).map{|i|0}).sort[feature_column.size/2] end def mean(feature_column, n) return feature_column.reduce { |sum, i| sum+i } / n end # selection def select_k(weights, norm_fun, n, k=10000) weights.sort{|a,b| norm_fun.call(b[1], n) <=> norm_fun.call(a[1], n)}.each { |p| puts "#{p[0]}\t#{mean(p[1], n)}" k -= 1 if k == 0 then break end } end def cut(weights, norm_fun, n, epsilon=0.0001) weights.each { |k,v| if norm_fun.call(v, n).abs >= epsilon puts "#{k}\t#{mean(v, n)}" end } end # test def _test() puts w = {} w["a"] = [1, 2, 3] w["b"] = [1, 2] w["c"] = [66] w["d"] = [10, 20, 30] n = 3 puts w.to_s puts puts "select_k" puts "l0 expect ad" select_k(w, method(:l0), n, 2) puts "l1 expect cd" select_k(w, method(:l1), n, 2) puts "l2 expect c" select_k(w, method(:l2), n, 1) puts puts "cut" puts "l1 expect cd" cut(w, method(:l1), n, 7) puts puts "median" a = [1,2,3,4,5] puts a.to_s puts median(a, 5) puts puts "#{median(a, 7)} <- that's because we add missing 0s:" puts a.concat(0.step(7-a.size-1).map{|i|0}).to_s puts puts "mean expect bc" w.clear w["a"] = [2] w["b"] = [2.1] w["c"] = [2.2] cut(w, method(:mean), 1, 2.05) exit end #_test() def usage() puts "lplp.rb <l0,l1,l2,linfty,mean,median> <cut|select_k> <k|threshold> <#shards> < <input>" puts " l0...: norms for selection" puts "select_k: only output top k (according to the norm of their column vector) features" puts " cut: output features with weight >= threshold" puts " n: if we do not have a shard count use this number for averaging" exit 1 end if ARGV.size < 4 then usage end norm_fun = method(ARGV[0].to_sym) type = ARGV[1] x = ARGV[2].to_f shard_count = ARGV[3].to_f STDIN.set_encoding 'utf-8' STDOUT.set_encoding 'utf-8' w = {} while line = STDIN.gets key, val = line.split /\s+/ if w.has_key? key w[key].push val.to_f else w[key] = [val.to_f] end end if type == 'cut' cut(w, norm_fun, shard_count, x) elsif type == 'select_k' select_k(w, norm_fun, shard_count, x) else puts "oh oh" end