cdec cfg './cdec.ini' Loading the LM will be faster if you build a binary file. Reading ./nc-wmt11.en.srilm.gz ----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 **************************************************************************************************** Example feature: Shape_S00000_T00000 Seeding random number sequence to 2679584485 dtrain Parameters: k 100 N 4 T 2 scorer 'stupid_bleu' sample from 'kbest' filter 'uniq' learning rate 1 gamma 0 loss margin 0 faster perceptron 1 pairs 'XYX' hi lo 0.1 pair threshold 0 select weights 'VOID' l1 reg 0 'none' max pairs 4294967295 cdec cfg './cdec.ini' input './nc-wmt11.de.gz' refs './nc-wmt11.en.gz' output '-' stop_after 10 (a dot represents 10 inputs) Iteration #1 of 2. . 10 Stopping after 10 input sentences. WEIGHTS Glue = -576 WordPenalty = +417.79 LanguageModel = +5117.5 LanguageModel_OOV = -1307 PhraseModel_0 = -1612 PhraseModel_1 = -2159.6 PhraseModel_2 = -677.36 PhraseModel_3 = +2663.8 PhraseModel_4 = -1025.9 PhraseModel_5 = -8 PhraseModel_6 = +70 PassThrough = -1455 --- 1best avg score: 0.27697 (+0.27697) 1best avg model score: -47918 (-47918) avg # pairs: 581.9 (meaningless) avg # rank err: 581.9 avg # margin viol: 0 non0 feature count: 703 avg list sz: 90.9 avg f count: 100.09 (time 0.25 min, 1.5 s/S) Iteration #2 of 2. . 10 WEIGHTS Glue = -622 WordPenalty = +898.56 LanguageModel = +8066.2 LanguageModel_OOV = -2590 PhraseModel_0 = -4335.8 PhraseModel_1 = -5864.4 PhraseModel_2 = -1729.8 PhraseModel_3 = +2831.9 PhraseModel_4 = -5384.8 PhraseModel_5 = +1449 PhraseModel_6 = +480 PassThrough = -2578 --- 1best avg score: 0.37119 (+0.094226) 1best avg model score: -1.3174e+05 (-83822) avg # pairs: 584.1 (meaningless) avg # rank err: 584.1 avg # margin viol: 0 non0 feature count: 1115 avg list sz: 91.3 avg f count: 90.755 (time 0.3 min, 1.8 s/S) Writing weights file to '-' ... done --- Best iteration: 2 [SCORE 'stupid_bleu'=0.37119]. This took 0.55 min.