#include "dtrain_net_interface.h" #include "sample_net_interface.h" #include "score_net_interface.h" #include "update.h" #include #include #include "nn.hpp" #include // mkfifo #include #include #include #include #include using namespace dtrain; int main(int argc, char** argv) { // get configuration po::variables_map conf; if (!dtrain_net_init(argc, argv, &conf)) exit(1); // something is wrong const size_t k = conf["k"].as(); const size_t N = conf["N"].as(); const weight_t margin = conf["margin"].as(); const string master_addr = conf["addr"].as(); const string output_fn = conf["output"].as(); const string debug_fn = conf["debug_output"].as(); vector dense_features; boost::split(dense_features, conf["dense_features"].as(), boost::is_any_of(" ")); const bool output_derivation = conf["output_derivation"].as(); const bool output_rules = conf["output_rules"].as(); // update lm /*if (conf["update_lm_fn"].as() != "") mkfifo(conf["update_lm_fn"].as().c_str(), 0666);*/ // setup socket nn::socket sock(AF_SP, NN_PAIR); sock.bind(master_addr.c_str()); string hello = "hello"; sock.send(hello.c_str(), hello.size()+1, 0); // setup decoder register_feature_functions(); SetSilent(true); ReadFile f(conf["decoder_conf"].as()); Decoder decoder(f.stream()); ScoredKbest* observer = new ScoredKbest(k, new PerSentenceBleuScorer(N)); // weights vector& decoder_weights = decoder.CurrentWeightVector(); SparseVector lambdas, w_average, original_lambdas; if (conf.count("input_weights")) { Weights::InitFromFile(conf["input_weights"].as(), &decoder_weights); Weights::InitSparseVector(decoder_weights, &lambdas); Weights::InitSparseVector(decoder_weights, &original_lambdas); } // learning rates SparseVector learning_rates, original_learning_rates; weight_t learning_rate_R, original_learning_rate_R; weight_t learning_rate_RB, original_learning_rate_RB; weight_t learning_rate_Shape, original_learning_rate_Shape; vector l; Weights::InitFromFile(conf["learning_rates"].as(), &l); Weights::InitSparseVector(l, &learning_rates); original_learning_rates = learning_rates; learning_rate_R = conf["learning_rate_R"].as(); original_learning_rate_R = learning_rate_R; learning_rate_RB = conf["learning_rate_RB"].as(); original_learning_rate_RB = learning_rate_RB; learning_rate_Shape = conf["learning_rate_Shape"].as(); original_learning_rate_Shape = learning_rate_Shape; cerr << _p4; // output configuration cerr << "dtrain_net_interface" << endl << "Parameters:" << endl; cerr << setw(25) << "k " << k << endl; cerr << setw(25) << "N " << N << endl; cerr << setw(25) << "margin " << margin << endl; cerr << setw(25) << "decoder conf " << "'" << conf["decoder_conf"].as() << "'" << endl; cerr << setw(25) << "output " << "'" << output_fn << "'" << endl; cerr << setw(25) << "debug " << "'" << debug_fn << "'" << endl; cerr << setw(25) << "learning rates " << "'" << conf["learning_rates"].as() << "'" << endl; cerr << setw(25) << "learning rate R " << learning_rate_R << endl; cerr << setw(25) << "learning rate RB " << learning_rate_RB << endl; cerr << setw(25) << "learning rate Shape " << learning_rate_Shape << endl; // debug ostringstream debug_output; string done = "done"; vector* samples; size_t i = 0; while(true) { // debug -- debug_output.str(string()); debug_output.clear(); debug_output << "{" << endl; // hack us a nice JSON output // -- debug bool just_translate = false; char *buf = NULL; string source; vector refs; vector rsz; bool next = true; size_t sz = sock.recv(&buf, NN_MSG, 0); if (buf) { const string in(buf, buf+sz); nn::freemsg(buf); cerr << "[dtrain] got input '" << in << "'" << endl; if (boost::starts_with(in, "set_learning_rates")) { // set learning rates stringstream ss(in); string _,name; weight_t w; ss >> _; ss >> name; ss >> w; weight_t before = 0; ostringstream long_name; if (name == "R") { before = learning_rate_R; learning_rate_R = w; long_name << "rule id feature group"; } else if (name == "RB") { before = learning_rate_RB; learning_rate_RB = w; long_name << "rule bigram feature group"; } else if (name == "Shape") { before = learning_rate_Shape; learning_rate_Shape = w; long_name << "rule shape feature group"; } else { unsigned fid = FD::Convert(name); before = learning_rates[fid]; learning_rates[fid] = w; long_name << "feature '" << name << "'"; } ostringstream o; o << "set learning rate for " << long_name.str() << " to " << w << " (was: " << before << ")" << endl; string s = o.str(); cerr << "[dtrain] " << s; cerr << "[dtrain] done, looping again" << endl; sock.send(s.c_str(), s.size()+1, 0); continue; } else if (boost::starts_with(in, "reset_learning_rates")) { cerr << "[dtrain] resetting learning rates" << endl; learning_rates = original_learning_rates; learning_rate_R = original_learning_rate_R; learning_rate_RB = original_learning_rate_RB; learning_rate_Shape = original_learning_rate_Shape; cerr << "[dtrain] done, looping again" << endl; sock.send(done.c_str(), done.size()+1, 0); continue; } else if (boost::starts_with(in, "set_weights")) { // set learning rates stringstream ss(in); string _,name; weight_t w; ss >> _; ss >> name; ss >> w; weight_t before = 0; ostringstream o; unsigned fid = FD::Convert(name); before = lambdas[fid]; lambdas[fid] = w; o << "set weight for feature '" << name << "'" << "' to " << w << " (was: " << before << ")" << endl; string s = o.str(); cerr << "[dtrain] " << s; cerr << "[dtrain] done, looping again" << endl; sock.send(s.c_str(), s.size()+1, 0); continue; } else if (boost::starts_with(in, "reset_weights")) { // reset weights cerr << "[dtrain] resetting weights" << endl; lambdas = original_lambdas; cerr << "[dtrain] done, looping again" << endl; sock.send(done.c_str(), done.size()+1, 0); continue; } else if (in == "shutdown") { // shut down cerr << "[dtrain] got shutdown signal" << endl; next = false; continue; } else if (boost::starts_with(in, "get_weight")) { // get weight stringstream ss(in); string _,name; ss >> _; ss >> name; cerr << "[dtrain] getting weight for " << name << endl; ostringstream o; unsigned fid = FD::Convert(name); weight_t w = lambdas[fid]; o << w; string s = o.str(); sock.send(s.c_str(), s.size()+1, 0); continue; } else if (boost::starts_with(in, "get_rate")) { // get rate stringstream ss(in); string _,name; ss >> _; ss >> name; cerr << "[dtrain] getting rate for " << name << endl; ostringstream o; unsigned fid = FD::Convert(name); weight_t r; if (name == "R") r = learning_rate_R; else if (name == "RB") r = learning_rate_RB; else if (name == "Shape") r = learning_rate_Shape; else r = learning_rates[fid]; o << r; string s = o.str(); sock.send(s.c_str(), s.size()+1, 0); continue; } else { // translate vector parts; boost::algorithm::split_regex(parts, in, boost::regex(" \\|\\|\\| ")); if (parts[0] == "act:translate" || parts[0] == "act:translate_learn") { if (parts[0] == "act:translate") just_translate = true; cerr << "[dtrain] translating ..." << endl; lambdas.init_vector(&decoder_weights); observer->dont_score = true; decoder.Decode(parts[1], observer); observer->dont_score = false; samples = observer->GetSamples(); if (parts[0] == "act:translate") { ostringstream os; cerr << "[dtrain] 1best features " << (*samples)[0].f << endl; if (output_derivation) { os << observer->GetViterbiTreeStr() << endl; } else { PrintWordIDVec((*samples)[0].w, os); } if (output_rules) { os << observer->GetViterbiRules() << endl; } sock.send(os.str().c_str(), os.str().size()+1, 0); cerr << "[dtrain] done translating, looping again" << endl; } } //else { // learn if (!just_translate) { cerr << "[dtrain] learning ..." << endl; source = parts[1]; // debug -- debug_output << "\"source\":\"" << escapeJson(source.substr(source.find_first_of(">")+2, source.find_last_of(">")-6)) << "\"," << endl; debug_output << "\"target\":\"" << escapeJson(parts[2]) << "\"," << endl; // -- debug parts.erase(parts.begin()); parts.erase(parts.begin()); for (auto s: parts) { vector r; vector toks; boost::split(toks, s, boost::is_any_of(" ")); for (auto tok: toks) r.push_back(TD::Convert(tok)); refs.emplace_back(MakeNgrams(r, N)); rsz.push_back(r.size()); } for (size_t r = 0; r < samples->size(); r++) (*samples)[r].gold = observer->scorer_->Score((*samples)[r].w, refs, rsz); //} //} } } } if (!next) break; // decode lambdas.init_vector(&decoder_weights); // debug --) ostringstream os; PrintWordIDVec((*samples)[0].w, os); debug_output << "\"1best\":\"" << escapeJson(os.str()); debug_output << "\"," << endl; debug_output << "\"kbest\":[" << endl; size_t h = 0; for (auto s: *samples) { debug_output << "\"" << s.gold << " ||| " << s.model << " ||| " << s.rank << " ||| "; for (auto o: s.f) debug_output << escapeJson(FD::Convert(o.first)) << "=" << o.second << " "; debug_output << " ||| "; ostringstream os; PrintWordIDVec(s.w, os); debug_output << escapeJson(os.str()); h += 1; debug_output << "\""; if (h < samples->size()) { debug_output << ","; } debug_output << endl; } debug_output << "]," << endl; debug_output << "\"samples_size\":" << samples->size() << "," << endl; debug_output << "\"weights_before\":{" << endl; sparseVectorToJson(lambdas, debug_output); debug_output << "}," << endl; // -- debug // // get pairs SparseVector update; size_t num_up = CollectUpdates(samples, update, margin); // debug -- debug_output << "\"1best_features\":{"; sparseVectorToJson((*samples)[0].f, debug_output); debug_output << "}," << endl; debug_output << "\"update_raw\":{"; sparseVectorToJson(update, debug_output); debug_output << "}," << endl; // -- debug // update for (auto it: update) { string fname = FD::Convert(it.first); unsigned k = it.first; weight_t v = it.second; if (learning_rates.find(it.first) != learning_rates.end()) { update[k] = learning_rates[k]*v; } else { if (boost::starts_with(fname, "R:")) { update[k] = learning_rate_R*v; } else if (boost::starts_with(fname, "RBS:") || boost::starts_with(fname, "RBT:")) { update[k] = learning_rate_RB*v; } else if (boost::starts_with(fname, "Shape_")) { update[k] = learning_rate_Shape*v; } } } if (!just_translate) { lambdas += update; } else { i++; } // debug -- debug_output << "\"update\":{"; sparseVectorToJson(update, debug_output); debug_output << "}," << endl; debug_output << "\"num_up\":" << num_up << "," << endl; debug_output << "\"updated_features\":" << update.size() << "," << endl; debug_output << "\"learning_rate_R\":" << learning_rate_R << "," << endl; debug_output << "\"learning_rate_RB\":" << learning_rate_R << "," << endl; debug_output << "\"learning_rate_Shape\":" << learning_rate_R << "," << endl; debug_output << "\"learning_rates\":{" << endl; sparseVectorToJson(learning_rates, debug_output); debug_output << "}," << endl; debug_output << "\"best_match\":\""; ostringstream ps; PrintWordIDVec((*samples)[0].w, ps); debug_output << escapeJson(ps.str()); debug_output << "\"," << endl; debug_output << "\"best_match_score\":" << (*samples)[0].gold << "," << endl ; // -- debug // debug -- debug_output << "\"weights_after\":{" << endl; sparseVectorToJson(lambdas, debug_output); debug_output << "}" << endl; debug_output << "}" << endl; // -- debug // debug -- WriteFile f(debug_fn); f.get() << debug_output.str(); f.get() << std::flush; // -- debug // write current weights if (!just_translate) { lambdas.init_vector(decoder_weights); ostringstream fn; fn << output_fn << "." << i << ".gz"; Weights::WriteToFile(fn.str(), decoder_weights, true); } if (!just_translate) { cerr << "[dtrain] done learning, looping again" << endl; sock.send(done.c_str(), done.size()+1, 0); } } // input loop string shutdown = "off"; sock.send(shutdown.c_str(), shutdown.size()+1, 0); cerr << "[dtrain] shutting down, goodbye" << endl; return 0; }