#include "dtrain_net_interface.h" #include "sample_net_interface.h" #include "score_net_interface.h" #include "update.h" #include #include #include "nn.hpp" using namespace dtrain; int main(int argc, char** argv) { // get configuration po::variables_map conf; if (!dtrain_net_init(argc, argv, &conf)) exit(1); // something is wrong const size_t k = conf["k"].as(); const size_t N = conf["N"].as(); weight_t eta = conf["learning_rate"].as(); weight_t eta_sparse = conf["learning_rate_sparse"].as(); const weight_t margin = conf["margin"].as(); const string master_addr = conf["addr"].as(); const string output_fn = conf["output"].as(); const string debug_fn = conf["debug_output"].as(); vector dense_features; boost::split(dense_features, conf["dense_features"].as(), boost::is_any_of(" ")); const bool output_derivation = conf["output_derivation"].as(); const bool output_rules = conf["output_rules"].as(); // setup decoder register_feature_functions(); SetSilent(true); ReadFile f(conf["decoder_conf"].as()); Decoder decoder(f.stream()); ScoredKbest* observer = new ScoredKbest(k, new PerSentenceBleuScorer(N)); // weights vector& decoder_weights = decoder.CurrentWeightVector(); SparseVector lambdas, w_average, original_lambdas; if (conf.count("input_weights")) { Weights::InitFromFile(conf["input_weights"].as(), &decoder_weights); Weights::InitSparseVector(decoder_weights, &lambdas); Weights::InitSparseVector(decoder_weights, &original_lambdas); } cerr << _p4; // output configuration cerr << "dtrain_net_interface" << endl << "Parameters:" << endl; cerr << setw(25) << "k " << k << endl; cerr << setw(25) << "N " << N << endl; cerr << setw(25) << "eta " << eta << endl; cerr << setw(25) << "eta (sparse) " << eta_sparse << endl; cerr << setw(25) << "margin " << margin << endl; cerr << setw(25) << "decoder conf " << "'" << conf["decoder_conf"].as() << "'" << endl; cerr << setw(25) << "output " << "'" << output_fn << "'" << endl; cerr << setw(25) << "debug " << "'" << debug_fn << "'" << endl; // setup socket nn::socket sock(AF_SP, NN_PAIR); sock.bind(master_addr.c_str()); string hello = "hello"; sock.send(hello.c_str(), hello.size()+1, 0); // debug ostringstream debug_output; string done = "done"; size_t i = 0; while(true) { // debug -- debug_output.str(string()); debug_output.clear(); debug_output << "{" << endl; // hack us a nice JSON output // -- debug char *buf = NULL; string source; vector refs; vector rsz; bool next = true; size_t sz = sock.recv(&buf, NN_MSG, 0); if (buf) { const string in(buf, buf+sz); nn::freemsg(buf); cerr << "[dtrain] got input '" << in << "'" << endl; if (boost::starts_with(in, "set_learning_rate")) { // set learning rate stringstream ss(in); string x; weight_t w; ss >> x; ss >> w; cerr << "[dtrain] setting (dense) learning rate to " << w << " (was: " << eta << ")" << endl; eta = w; cerr << "[dtrain] done, looping again" << endl; sock.send(done.c_str(), done.size()+1, 0); continue; } else if (boost::starts_with(in, "set_sparse_learning_rate")) { // set sparse learning rate stringstream ss(in); string x; weight_t w; ss >> x; ss >> w; cerr << "[dtrain] setting sparse learning rate to " << w << " (was: " << eta_sparse << ")" << endl; eta_sparse = w; cerr << "[dtrain] done, looping again" << endl; sock.send(done.c_str(), done.size()+1, 0); continue; } else if (boost::starts_with(in, "reset_weights")) { // reset weights cerr << "[dtrain] resetting weights" << endl; lambdas = original_lambdas; cerr << "[dtrain] done, looping again" << endl; sock.send(done.c_str(), done.size()+1, 0); continue; } else if (in == "shutdown") { // shut down cerr << "[dtrain] got shutdown signal" << endl; next = false; } else { // translate vector parts; boost::algorithm::split_regex(parts, in, boost::regex(" \\|\\|\\| ")); if (parts[0] == "act:translate") { cerr << "[dtrain] translating ..." << endl; lambdas.init_vector(&decoder_weights); observer->dont_score = true; decoder.Decode(parts[1], observer); observer->dont_score = false; vector* samples = observer->GetSamples(); ostringstream os; cerr << "[dtrain] 1best features " << (*samples)[0].f << endl; if (output_derivation) { os << observer->GetViterbiTreeStr() << endl; } else { PrintWordIDVec((*samples)[0].w, os); } if (output_rules) { os << observer->GetViterbiRules() << endl; } sock.send(os.str().c_str(), os.str().size()+1, 0); cerr << "[dtrain] done translating, looping again" << endl; continue; } else { // learn cerr << "[dtrain] learning ..." << endl; source = parts[0]; // debug -- debug_output << "\"source\":\"" << source.substr(source.find_first_of(">")+1, source.find_last_of("<")-3) << "\"," << endl; debug_output << "\"target\":\"" << parts[1] << "\"," << endl; // -- debug parts.erase(parts.begin()); for (auto s: parts) { vector r; vector toks; boost::split(toks, s, boost::is_any_of(" ")); for (auto tok: toks) r.push_back(TD::Convert(tok)); refs.emplace_back(MakeNgrams(r, N)); rsz.push_back(r.size()); } } } } if (!next) break; // decode lambdas.init_vector(&decoder_weights); observer->SetReference(refs, rsz); decoder.Decode(source, observer); vector* samples = observer->GetSamples(); // debug -- debug_output << "\"1best\":\""; PrintWordIDVec((*samples)[0].w, debug_output); debug_output << "\"," << endl; debug_output << "\"kbest\":[" << endl; size_t h = 0; for (auto s: *samples) { debug_output << "\"" << s.gold << " ||| " << s.model << " ||| " << s.rank << " ||| "; for (auto o: s.f) debug_output << FD::Convert(o.first) << "=" << o.second << " "; debug_output << " ||| "; PrintWordIDVec(s.w, debug_output); h += 1; debug_output << "\""; if (h < samples->size()) { debug_output << ","; } debug_output << endl; } debug_output << "]," << endl; debug_output << "\"samples_size\":" << samples->size() << "," << endl; debug_output << "\"weights_before\":{" << endl; weightsToJson(lambdas, debug_output); debug_output << "}," << endl; // -- debug // get pairs and update SparseVector updates; size_t num_up = CollectUpdates(samples, updates, margin); updates *= eta_sparse; // apply learning rate for sparse features for (auto feat: dense_features) { // apply learning rate for dense features updates[FD::Convert(feat)] /= eta_sparse; updates[FD::Convert(feat)] *= eta; } // debug -- debug_output << "\"num_up\":" << num_up << "," << endl; debug_output << "\"updated_features\":" << updates.size() << "," << endl; debug_output << "\"learning_rate\":" << eta << "," << endl; debug_output << "\"learning_rate_sparse\":" << eta_sparse << "," << endl; debug_output << "\"best_match\":\""; PrintWordIDVec((*samples)[0].w, debug_output); debug_output << "\"," << endl; debug_output << "\"best_match_score\":" << (*samples)[0].gold << "," << endl ; // -- debug lambdas.plus_eq_v_times_s(updates, 1.0); i++; // debug -- debug_output << "\"weights_after\":{" << endl; weightsToJson(lambdas, debug_output); debug_output << "}" << endl; debug_output << "}" << endl; // -- debug cerr << "[dtrain] done learning, looping again" << endl; sock.send(done.c_str(), done.size()+1, 0); // debug -- WriteFile f(debug_fn); f.get() << debug_output.str(); f.get() << std::flush; // -- debug // write current weights lambdas.init_vector(decoder_weights); ostringstream fn; fn << output_fn << "." << i << ".gz"; Weights::WriteToFile(fn.str(), decoder_weights, true); } // input loop string shutdown = "off"; sock.send(shutdown.c_str(), shutdown.size()+1, 0); cerr << "[dtrain] shutting down, goodbye" << endl; return 0; }