#include "dtrain.h" #include "score.h" #include "sample.h" #include "pairs.h" using namespace dtrain; bool dtrain_init(int argc, char** argv, po::variables_map* conf) { po::options_description ini("Configuration File Options"); ini.add_options() ("bitext,b", po::value(), "bitext: 'src ||| tgt ||| tgt ||| ...'") ("output,o", po::value()->default_value("-"), "output weights file, '-' for STDOUT") ("input_weights,w", po::value(), "input weights file (e.g. from previous iteration)") ("decoder_config,d", po::value(), "configuration file for cdec") ("print_weights", po::value(), "weights to print on each iteration") ("stop_after", po::value()->default_value(0), "stop after X input sentences") ("keep", po::value()->zero_tokens(), "keep weights files for each iteration") ("epochs", po::value()->default_value(10), "# of iterations T (per shard)") ("k", po::value()->default_value(100), "how many translations to sample") ("filter", po::value()->default_value("uniq"), "filter kbest list: 'not', 'uniq'") ("pair_sampling", po::value()->default_value("XYX"), "how to sample pairs: 'all', 'XYX' or 'PRO'") ("hi_lo", po::value()->default_value(0.1), "hi and lo (X) for XYX (default 0.1), <= 0.5") ("pair_threshold", po::value()->default_value(0.), "bleu [0,1] threshold to filter pairs") ("N", po::value()->default_value(4), "N for Ngrams (BLEU)") ("scorer", po::value()->default_value("stupid_bleu"), "scoring: bleu, stupid_, smooth_, approx_, lc_") ("learning_rate", po::value()->default_value(1.0), "learning rate") ("gamma", po::value()->default_value(0.), "gamma for SVM (0 for perceptron)") ("select_weights", po::value()->default_value("last"), "output best, last, avg weights ('VOID' to throw away)") ("rescale", po::value()->zero_tokens(), "(re)scale data and weight vector to unit length") ("l1_reg", po::value()->default_value("none"), "apply l1 regularization with clipping as in 'Tsuroka et al' (2010)") ("l1_reg_strength", po::value(), "l1 regularization strength") ("fselect", po::value()->default_value(-1), "select top x percent (or by threshold) of features after each epoch NOT IMPLEMENTED") // TODO ("loss_margin", po::value()->default_value(0.), "update if no error in pref pair but model scores this near") ("max_pairs", po::value()->default_value(std::numeric_limits::max()), "max. # of pairs per Sent.") ("pclr", po::value()->default_value("no"), "use a (simple|adagrad) per-coordinate learning rate") ("batch", po::value()->zero_tokens(), "do batch optimization") ("repeat", po::value()->default_value(1), "repeat optimization over kbest list this number of times") ("output_ranking", po::value()->default_value(""), "output scored kbests to dir") ("noup", po::value()->zero_tokens(), "dont't optimize"); po::options_description cl("Command Line Options"); cl.add_options() ("config,c", po::value(), "dtrain config file") ("quiet,q", po::value()->zero_tokens(), "be quiet") ("verbose,v", po::value()->zero_tokens(), "be verbose"); cl.add(ini); po::store(parse_command_line(argc, argv, cl), *conf); if (conf->count("config")) { ifstream ini_f((*conf)["config"].as().c_str()); po::store(po::parse_config_file(ini_f, ini), *conf); } po::notify(*conf); if (!conf->count("decoder_config")) { cerr << cl << endl; return false; } if ((*conf)["pair_sampling"].as() != "all" && (*conf)["pair_sampling"].as() != "XYX" && (*conf)["pair_sampling"].as() != "PRO" && (*conf)["pair_sampling"].as() != "output_pairs") { cerr << "Wrong 'pair_sampling' param: '" << (*conf)["pair_sampling"].as() << "'." << endl; return false; } if (conf->count("hi_lo") && (*conf)["pair_sampling"].as() != "XYX") { cerr << "Warning: hi_lo only works with pair_sampling XYX." << endl; } if ((*conf)["hi_lo"].as() > 0.5 || (*conf)["hi_lo"].as() < 0.01) { cerr << "hi_lo must lie in [0.01, 0.5]" << endl; return false; } if (!conf->count("bitext")) { cerr << "No training data given." << endl; return false; } if ((*conf)["pair_threshold"].as() < 0) { cerr << "The threshold must be >= 0!" << endl; return false; } if ((*conf)["select_weights"].as() != "last" && (*conf)["select_weights"].as() != "best" && (*conf)["select_weights"].as() != "avg" && (*conf)["select_weights"].as() != "VOID") { cerr << "Wrong 'select_weights' param: '" << (*conf)["select_weights"].as() << "', use 'last' or 'best'." << endl; return false; } return true; } int main(int argc, char** argv) { // handle most parameters po::variables_map conf; if (!dtrain_init(argc, argv, &conf)) exit(1); // something is wrong bool quiet = false; if (conf.count("quiet")) quiet = true; bool verbose = false; if (conf.count("verbose")) verbose = true; bool noup = false; if (conf.count("noup")) noup = true; bool keep = false; if (conf.count("keep")) keep = true; bool rescale = false; if (conf.count("rescale")) rescale = true; const unsigned k = conf["k"].as(); const unsigned N = conf["N"].as(); const unsigned T = conf["epochs"].as(); const unsigned stop_after = conf["stop_after"].as(); const string pair_sampling = conf["pair_sampling"].as(); const score_t pair_threshold = conf["pair_threshold"].as(); const string select_weights = conf["select_weights"].as(); const string output_ranking = conf["output_ranking"].as(); const float hi_lo = conf["hi_lo"].as(); const unsigned max_pairs = conf["max_pairs"].as(); int repeat = conf["repeat"].as(); weight_t loss_margin = conf["loss_margin"].as(); bool batch = false; if (conf.count("batch")) batch = true; if (loss_margin > 9998.) loss_margin = std::numeric_limits::max(); const string pclr = conf["pclr"].as(); bool average = false; if (select_weights == "avg") average = true; vector print_weights; if (conf.count("print_weights")) boost::split(print_weights, conf["print_weights"].as(), boost::is_any_of(" ")); // setup decoder register_feature_functions(); SetSilent(true); ReadFile ini_rf(conf["decoder_config"].as()); if (!quiet) cerr << setw(25) << "cdec conf " << "'" << conf["decoder_config"].as() << "'" << endl; Decoder decoder(ini_rf.stream()); // setup decoder observer ScoredKbest* observer = new ScoredKbest(k, new PerSentenceBleuScorer(N)); // init weights vector& decoder_weights = decoder.CurrentWeightVector(); SparseVector lambdas, cumulative_penalties, w_average, fixed; if (conf.count("input_weights")) Weights::InitFromFile(conf["input_weights"].as(), &decoder_weights); Weights::InitSparseVector(decoder_weights, &lambdas); // meta params for perceptron, SVM weight_t eta = conf["learning_rate"].as(); weight_t gamma = conf["gamma"].as(); // faster perceptron: consider only misranked pairs, see bool faster_perceptron = false; if (gamma==0 && loss_margin==0) faster_perceptron = true; // l1 regularization bool l1naive = false; bool l1clip = false; bool l1cumul = false; weight_t l1_reg = 0; if (conf["l1_reg"].as() != "none") { string s = conf["l1_reg"].as(); if (s == "naive") l1naive = true; else if (s == "clip") l1clip = true; else if (s == "cumul") l1cumul = true; l1_reg = conf["l1_reg_strength"].as(); } // output string output_fn = conf["output"].as(); // input string input_fn; ReadFile input(conf["bitext"].as()); // buffer input for t > 0 vector src_str_buf; // source strings (decoder takes only strings) vector > > refs_as_ids_buf; // references as WordID vecs unsigned in_sz = std::numeric_limits::max(); // input index, input size vector > all_scores; score_t max_score = 0.; unsigned best_it = 0; float overall_time = 0.; // output conf if (!quiet) { cerr << _p5; cerr << endl << "dtrain" << endl << "Parameters:" << endl; cerr << setw(25) << "k " << k << endl; cerr << setw(25) << "N " << N << endl; cerr << setw(25) << "T " << T << endl; cerr << setw(25) << "batch " << batch << endl; cerr << setw(25) << "learning rate " << eta << endl; cerr << setw(25) << "gamma " << gamma << endl; cerr << setw(25) << "loss margin " << loss_margin << endl; cerr << setw(25) << "faster perceptron " << faster_perceptron << endl; cerr << setw(25) << "pairs " << "'" << pair_sampling << "'" << endl; if (pair_sampling == "XYX") cerr << setw(25) << "hi lo " << hi_lo << endl; cerr << setw(25) << "pair threshold " << pair_threshold << endl; cerr << setw(25) << "select weights " << "'" << select_weights << "'" << endl; if (conf.count("l1_reg")) cerr << setw(25) << "l1 reg " << l1_reg << " '" << conf["l1_reg"].as() << "'" << endl; if (rescale) cerr << setw(25) << "rescale " << rescale << endl; cerr << setw(25) << "pclr " << pclr << endl; cerr << setw(25) << "max pairs " << max_pairs << endl; cerr << setw(25) << "repeat " << repeat << endl; cerr << setw(25) << "cdec conf " << "'" << conf["decoder_config"].as() << "'" << endl; cerr << setw(25) << "input " << "'" << input_fn << "'" << endl; cerr << setw(25) << "output " << "'" << output_fn << "'" << endl; if (conf.count("input_weights")) cerr << setw(25) << "weights in " << "'" << conf["input_weights"].as() << "'" << endl; if (stop_after > 0) cerr << setw(25) << "stop_after " << stop_after << endl; if (!verbose) cerr << "(a dot represents " << DTRAIN_DOTS << " inputs)" << endl; } // pclr SparseVector learning_rates; // batch SparseVector batch_updates; score_t batch_loss; for (unsigned t = 0; t < T; t++) // T epochs { time_t start, end; time(&start); score_t score_sum = 0.; score_t model_sum(0); unsigned ii = 0, rank_errors = 0, margin_violations = 0, npairs = 0, f_count = 0, list_sz = 0, kbest_loss_improve = 0; batch_loss = 0.; if (!quiet) cerr << "Iteration #" << t+1 << " of " << T << "." << endl; while(true) { string in; vector refs; bool next = false, stop = false; // next iteration or premature stop if (t == 0) { if(!getline(*input, in)) next = true; boost::algorithm::split_regex(refs, in, boost::regex(" \\|\\|\\| ")); in = refs[0]; refs.erase(refs.begin()); } else { if (ii == in_sz) next = true; // stop if we reach the end of our input } // stop after X sentences (but still go on for those) if (stop_after > 0 && stop_after == ii && !next) stop = true; // produce some pretty output if (!quiet && !verbose) { if (ii == 0) cerr << " "; if ((ii+1) % (DTRAIN_DOTS) == 0) { cerr << "."; cerr.flush(); } if ((ii+1) % (20*DTRAIN_DOTS) == 0) { cerr << " " << ii+1 << endl; if (!next && !stop) cerr << " "; } if (stop) { if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl; cerr << "Stopping after " << stop_after << " input sentences." << endl; } else { if (next) { if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl; } } } // next iteration if (next || stop) break; // weights lambdas.init_vector(&decoder_weights); // getting input if (t == 0) { vector > cur_refs; for (auto r: refs) { vector cur_ref; vector tok; boost::split(tok, r, boost::is_any_of(" ")); RegisterAndConvert(tok, cur_ref); cur_refs.push_back(cur_ref); } refs_as_ids_buf.push_back(cur_refs); src_str_buf.push_back(in); } observer->SetReference(refs_as_ids_buf[ii]); if (t == 0) decoder.Decode(in, observer); else decoder.Decode(src_str_buf[ii], observer); // get (scored) samples vector* samples = observer->GetSamples(); if (output_ranking != "") { WriteFile of(output_ranking+"/"+to_string(t)+"."+to_string(ii)+".list"); // works with '-' stringstream ss; for (auto s: *samples) { ss << ii << " ||| "; PrintWordIDVec(s.w, ss); ss << " ||| " << s.model << " ||| " << s.score << endl; } of.get() << ss.str(); } if (verbose) { cerr << "--- refs for " << ii << ": "; for (auto r: refs_as_ids_buf[ii]) { PrintWordIDVec(r); cerr << endl; } for (unsigned u = 0; u < samples->size(); u++) { cerr << _p2 << _np << "[" << u << ". '"; PrintWordIDVec((*samples)[u].w); cerr << "'" << endl; cerr << "SCORE=" << (*samples)[u].score << ",model="<< (*samples)[u].model << endl; cerr << "F{" << (*samples)[u].f << "} ]" << endl << endl; } } if (repeat == 1) { score_sum += (*samples)[0].score; // stats for 1best model_sum += (*samples)[0].model; } f_count += observer->GetFeatureCount(); list_sz += observer->GetSize(); // weight updates if (!noup) { // get pairs vector > pairs; if (pair_sampling == "all") all_pairs(samples, pairs, pair_threshold, max_pairs, faster_perceptron); if (pair_sampling == "XYX") partXYX(samples, pairs, pair_threshold, max_pairs, faster_perceptron, hi_lo); if (pair_sampling == "PRO") PROsampling(samples, pairs, pair_threshold, max_pairs); if (pair_sampling == "output_pairs") all_pairs(samples, pairs, pair_threshold, max_pairs, false); int cur_npairs = pairs.size(); npairs += cur_npairs; score_t kbest_loss_first = 0.0, kbest_loss_last = 0.0; if (pair_sampling == "output_pairs") { for (auto p: pairs) { cout << p.first.model << " ||| " << p.first.score << " ||| " << p.first.f << endl; cout << p.second.model << " ||| " << p.second.score << " ||| " << p.second.f << endl; cout << endl; } continue; } for (vector >::iterator it = pairs.begin(); it != pairs.end(); it++) { if (rescale) { it->first.f /= it->first.f.l2norm(); it->second.f /= it->second.f.l2norm(); } score_t model_diff = it->first.model - it->second.model; score_t loss = max(0.0, -1.0 * model_diff); kbest_loss_first += loss; } score_t kbest_loss = 0.0; for (int ki=0; ki < repeat; ki++) { SparseVector lambdas_copy; // for l1 regularization SparseVector sum_up; // for pclr if (l1naive||l1clip||l1cumul) lambdas_copy = lambdas; for (vector >::iterator it = pairs.begin(); it != pairs.end(); it++) { score_t model_diff = it->first.model - it->second.model; score_t loss = max(0.0, -1.0 * model_diff); if (repeat > 1) { model_diff = lambdas.dot(it->first.f) - lambdas.dot(it->second.f); kbest_loss += loss; } bool rank_error = false; score_t margin; if (faster_perceptron) { // we only have considering misranked pairs rank_error = true; // pair sampling already did this for us margin = std::numeric_limits::max(); } else { rank_error = model_diff<=0.0; margin = fabs(model_diff); if (!rank_error && margin < loss_margin) margin_violations++; } if (rank_error && ki==0) rank_errors++; if (rank_error || margin < loss_margin) { SparseVector diff_vec = it->first.f - it->second.f; if (batch) { batch_loss += max(0., -1.0 * model_diff); batch_updates += diff_vec; continue; } if (pclr != "no") { sum_up += diff_vec; } else { lambdas.plus_eq_v_times_s(diff_vec, eta); if (gamma) lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./cur_npairs)); } } } // per-coordinate learning rate if (pclr != "no") { SparseVector::iterator it = sum_up.begin(); for (; it != sum_up.end(); ++it) { if (pclr == "simple") { lambdas[it->first] += it->second / max(1.0, learning_rates[it->first]); learning_rates[it->first]++; } else if (pclr == "adagrad") { if (learning_rates[it->first] == 0) { lambdas[it->first] += it->second * eta; } else { lambdas[it->first] += it->second * eta * learning_rates[it->first]; } learning_rates[it->first] += pow(it->second, 2.0); } } } // l1 regularization // please note that this regularizations happen // after a _sentence_ -- not after each example/pair! if (l1naive) { SparseVector::iterator it = lambdas.begin(); for (; it != lambdas.end(); ++it) { if (!lambdas_copy.get(it->first) || lambdas_copy.get(it->first)!=it->second) { it->second *= max(0.0000001, eta/(eta+learning_rates[it->first])); // FIXME learning_rates[it->first]++; it->second -= sign(it->second) * l1_reg; } } } else if (l1clip) { SparseVector::iterator it = lambdas.begin(); for (; it != lambdas.end(); ++it) { if (!lambdas_copy.get(it->first) || lambdas_copy.get(it->first)!=it->second) { if (it->second != 0) { weight_t v = it->second; if (v > 0) { it->second = max(0., v - l1_reg); } else { it->second = min(0., v + l1_reg); } } } } } else if (l1cumul) { weight_t acc_penalty = (ii+1) * l1_reg; // ii is the index of the current input SparseVector::iterator it = lambdas.begin(); for (; it != lambdas.end(); ++it) { if (!lambdas_copy.get(it->first) || lambdas_copy.get(it->first)!=it->second) { if (it->second != 0) { weight_t v = it->second; weight_t penalized = 0.; if (v > 0) { penalized = max(0., v-(acc_penalty + cumulative_penalties.get(it->first))); } else { penalized = min(0., v+(acc_penalty - cumulative_penalties.get(it->first))); } it->second = penalized; cumulative_penalties.set_value(it->first, cumulative_penalties.get(it->first)+penalized); } } } } if (ki==repeat-1) { // done kbest_loss_last = kbest_loss; if (repeat > 1) { score_t best_model = -std::numeric_limits::max(); unsigned best_idx = 0; for (unsigned i=0; i < samples->size(); i++) { score_t s = lambdas.dot((*samples)[i].f); if (s > best_model) { best_idx = i; best_model = s; } } score_sum += (*samples)[best_idx].score; model_sum += best_model; } } } // repeat if ((kbest_loss_first - kbest_loss_last) >= 0) kbest_loss_improve++; } // noup if (rescale) lambdas /= lambdas.l2norm(); ++ii; } // input loop if (t == 0) in_sz = ii; // remember size of input (# lines) if (batch) { lambdas.plus_eq_v_times_s(batch_updates, eta); if (gamma) lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./npairs)); batch_updates.clear(); } if (average) w_average += lambdas; // print some stats score_t score_avg = score_sum/(score_t)in_sz; score_t model_avg = model_sum/(score_t)in_sz; score_t score_diff, model_diff; if (t > 0) { score_diff = score_avg - all_scores[t-1].first; model_diff = model_avg - all_scores[t-1].second; } else { score_diff = score_avg; model_diff = model_avg; } unsigned nonz = 0; if (!quiet) nonz = (unsigned)lambdas.num_nonzero(); if (!quiet) { cerr << _p5 << _p << "WEIGHTS" << endl; for (vector::iterator it = print_weights.begin(); it != print_weights.end(); it++) { cerr << setw(18) << *it << " = " << lambdas.get(FD::Convert(*it)) << endl; } cerr << " ---" << endl; cerr << _np << " 1best avg score: " << score_avg; cerr << _p << " (" << score_diff << ")" << endl; cerr << _np << " 1best avg model score: " << model_avg; cerr << _p << " (" << model_diff << ")" << endl; cerr << " avg # pairs: "; cerr << _np << npairs/(float)in_sz << endl; cerr << " avg # rank err: "; cerr << rank_errors/(float)in_sz; if (faster_perceptron) cerr << " (meaningless)"; cerr << endl; cerr << " avg # margin viol: "; cerr << margin_violations/(float)in_sz << endl; if (batch) cerr << " batch loss: " << batch_loss << endl; cerr << " k-best loss imp: " << ((float)kbest_loss_improve/in_sz)*100 << "%" << endl; cerr << " non0 feature count: " << nonz << endl; cerr << " avg list sz: " << list_sz/(float)in_sz << endl; cerr << " avg f count: " << f_count/(float)list_sz << endl; } pair remember; remember.first = score_avg; remember.second = model_avg; all_scores.push_back(remember); if (score_avg > max_score) { max_score = score_avg; best_it = t; } time (&end); float time_diff = difftime(end, start); overall_time += time_diff; if (!quiet) { cerr << _p2 << _np << "(time " << time_diff/60. << " min, "; cerr << time_diff/in_sz << " s/S)" << endl; } if (t+1 != T && !quiet) cerr << endl; if (noup) break; // write weights to file if (select_weights == "best" || keep) { lambdas.init_vector(&decoder_weights); string w_fn = "weights." + boost::lexical_cast(t) + ".gz"; Weights::WriteToFile(w_fn, decoder_weights, true); } } // outer loop if (average) w_average /= (weight_t)T; if (!noup) { if (!quiet) cerr << endl << "Writing weights file to '" << output_fn << "' ..." << endl; if (select_weights == "last" || average) { // last, average WriteFile of(output_fn); ostream& o = *of.stream(); o.precision(17); o << _np; if (average) { for (SparseVector::iterator it = w_average.begin(); it != w_average.end(); ++it) { if (it->second == 0) continue; o << FD::Convert(it->first) << '\t' << it->second << endl; } } else { for (SparseVector::iterator it = lambdas.begin(); it != lambdas.end(); ++it) { if (it->second == 0) continue; o << FD::Convert(it->first) << '\t' << it->second << endl; } } } else if (select_weights == "VOID") { // do nothing with the weights } else { // best if (output_fn != "-") { CopyFile("weights."+boost::lexical_cast(best_it)+".gz", output_fn); } else { ReadFile bestw("weights."+boost::lexical_cast(best_it)+".gz"); string o; cout.precision(17); cout << _np; while(getline(*bestw, o)) cout << o << endl; } if (!keep) { for (unsigned i = 0; i < T; i++) { string s = "weights." + boost::lexical_cast(i) + ".gz"; unlink(s.c_str()); } } } if (!quiet) cerr << "done" << endl; } if (!quiet) { cerr << _p5 << _np << endl << "---" << endl << "Best iteration: "; cerr << best_it+1 << " [SCORE = " << max_score << "]." << endl; cerr << "This took " << overall_time/60. << " min." << endl; } }