#ifndef _ARC_FACTORED_H_ #define _ARC_FACTORED_H_ #include <iostream> #include <cassert> #include <vector> #include <utility> #include <boost/shared_ptr.hpp> #include "array2d.h" #include "sparse_vector.h" #include "prob.h" #include "weights.h" #include "wordid.h" struct TaggedSentence { std::vector<WordID> words; std::vector<WordID> pos; }; struct ArcFeatureFunctions; struct EdgeSubset { EdgeSubset() {} std::vector<short> roots; // unless multiroot trees are supported, this // will have a single member std::vector<std::pair<short, short> > h_m_pairs; // h,m start at 0 // assumes ArcFeatureFunction::PrepareForInput has already been called void ExtractFeatures(const TaggedSentence& sentence, const ArcFeatureFunctions& ffs, SparseVector<double>* features) const; }; class ArcFactoredForest { public: ArcFactoredForest() : num_words_() {} explicit ArcFactoredForest(short num_words) : num_words_(num_words) { resize(num_words); } unsigned size() const { return num_words_; } void resize(unsigned num_words) { num_words_ = num_words; root_edges_.clear(); edges_.clear(); root_edges_.resize(num_words); edges_.resize(num_words, num_words); for (int h = 0; h < num_words; ++h) { for (int m = 0; m < num_words; ++m) { edges_(h, m).h = h; edges_(h, m).m = m; } root_edges_[h].h = -1; root_edges_[h].m = h; } } // compute the maximum spanning tree based on the current weighting // using the O(n^2) CLE algorithm void MaximumSpanningTree(EdgeSubset* st) const; // Reweight edges so that edge_prob is the edge's marginals // optionally returns log partition void EdgeMarginals(prob_t* p_log_z = NULL); // This may not return a tree void PickBestParentForEachWord(EdgeSubset* st) const; struct Edge { Edge() : h(), m(), features(), edge_prob(prob_t::Zero()) {} short h; short m; SparseVector<weight_t> features; prob_t edge_prob; }; // set eges_[*].features void ExtractFeatures(const TaggedSentence& sentence, const ArcFeatureFunctions& ffs); const Edge& operator()(short h, short m) const { return h >= 0 ? edges_(h, m) : root_edges_[m]; } Edge& operator()(short h, short m) { return h >= 0 ? edges_(h, m) : root_edges_[m]; } float Weight(short h, short m) const { return log((*this)(h,m).edge_prob); } template <class V> void Reweight(const V& weights) { for (int m = 0; m < num_words_; ++m) { for (int h = 0; h < num_words_; ++h) { if (h != m) { Edge& e = edges_(h, m); e.edge_prob.logeq(e.features.dot(weights)); } } Edge& e = root_edges_[m]; e.edge_prob.logeq(e.features.dot(weights)); } } private: int num_words_; std::vector<Edge> root_edges_; Array2D<Edge> edges_; }; inline std::ostream& operator<<(std::ostream& os, const ArcFactoredForest::Edge& edge) { return os << "(" << edge.h << " < " << edge.m << ")"; } inline std::ostream& operator<<(std::ostream& os, const EdgeSubset& ss) { for (unsigned i = 0; i < ss.roots.size(); ++i) os << "ROOT < " << ss.roots[i] << std::endl; for (unsigned i = 0; i < ss.h_m_pairs.size(); ++i) os << ss.h_m_pairs[i].first << " < " << ss.h_m_pairs[i].second << std::endl; return os; } #endif