\documentclass{beamer} \mode { \usetheme{Boadilla} \setbeamercovered{transparent}} \usepackage[english]{babel} \usepackage{times} \usepackage{xcolor} \usepackage{colortbl} %\usepackage{subfigure} \usepackage{fontspec} \usepackage{xunicode} \usepackage{xltxtra} \usepackage{booktabs} \newenvironment{CJK}{\fontspec[Scale=0.9]{PMingLiU}}{} \newenvironment{Geeza}{\fontspec[Scale=0.9]{Geeza Pro}}{} %% for tables \newcommand{\mc}{\multicolumn} \newcommand{\lab}[1]{\multicolumn{1}{c}{#1}} \newcommand{\ind}[1]{{\fboxsep1pt\raisebox{-.5ex}{\fbox{{\tiny #1}}}}} \newcommand{\IND}[1]{{\fboxsep1pt\raisebox{0ex}{\fbox{{\small #1}}}}} \newcommand\production[2]{\ensuremath{\langle\mbox{#1}, \mbox{#2}\rangle}} %% markup \newcommand{\buffer}[1]{{\color{blue}\textbf{#1}}} \newcommand{\pred}[1]{\code{#1}} %% colors \newcommand{\textred}[1]{\alert{#1}} \newcommand{\textblue}[1]{\buffer{#1}} \definecolor{tablecolor}{cmyk}{0,0.3,0.3,0} \newcommand{\keytab}[1]{\mc{1}{>{\columncolor{tablecolor}}d}{#1}} % rules \newcommand{\psr}[2]{#1 $\rightarrow \langle $ #2 $\rangle$} \newenvironment{unpacked_itemize}{ \begin{itemize} \setlength{\itemsep}{10pt} \setlength{\parskip}{0pt} \setlength{\parsep}{0pt} }{\end{itemize}} \newcommand{\condon}{\hspace{0pt} | \hspace{1pt}} \definecolor{darkblue}{rgb}{0,0,0.6} \newcommand{\blueexample}[1]{\textcolor{darkblue}{\rm #1}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\ws}{\ensuremath{\vec{w}}} \newcommand{\pu}{\ensuremath{P_0}} \newcommand{\bx}{\mathbf{x}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bd}{\mathbf{d}} \newcommand{\by}{\mathbf{y}} \newcommand\bleu{${B{\scriptstyle LEU}}$} \title[Models of SCFG Induction]{Models of Synchronous Grammar Induction for SMT} \author[CLSP Workshop 2010]{ Workshop 2010 %Phil Blunsom$^1$ \and Trevor Cohn$^2$ \and Chris Dyer$^3$ \and Adam Lopez$^4$ } \institute[Baltimore]{ The Center for Speech and Language Processing \\ Johns Hopkins University % $^1$University of Oxford\\ % $^2$University of Sheffield\\ % $^3$Carnegie Mellon University\\ % $^4$University of Edinburgh } \date[June 28]{June 28, 2010} %\subject{Unsupervised models of Synchronous Grammar Induction for SMT} %\pgfdeclareimage[height=1.0cm]{university-logo}{logo} %\logo{\pgfuseimage{university-logo}} %\AtBeginSection[] %{ % \begin{frame}{Outline} % %\tableofcontents[currentsection,currentsubsection] % \tableofcontents[currentsection] % \end{frame} %} %\beamerdefaultoverlayspecification{<+->} \begin{document} \begin{frame} \titlepage \end{frame} %\begin{frame}{Outline} % \tableofcontents % You might wish to add the option [pausesections] %\end{frame} %\begin{frame}{Outline} % \tableofcontents % % You might wish to add the option [pausesections] %\end{frame} %\begin{frame}[t]{Team members} %\begin{center} %{\bf Senior Members} \\ % Phil Blunsom (Oxford)\\ % Trevor Cohn (Sheffield)\\ % Adam Lopez (Edinburgh/COE)\\ % Chris Dyer (CMU)\\ % Jonathan Graehl (ISI)\\ % Chris Callison-Burch (JHU)\\ %\vspace{0.1in} %{\bf Graduate Students} \\ % Jan Botha (Oxford) \\ % Vladimir Eidelman (Maryland) \\ % Ziyuan Wang (JHU) \\ % ThuyLinh Nguyen (CMU) \\ %\vspace{0.1in} %{\bf Undergraduate Students} \\ % Olivia Buzek (Maryland) \\ % Desai Chen (CMU) \\ %\end{center} %\end{frame} \begin{frame}[t]{Statistical machine translation} %\vspace{1.0cm} \begin{exampleblock}{Urdu $\rightarrow$ English} \begin{figure} {\centering \includegraphics[scale=0.55]{urdu.pdf}} \end{figure} \vspace{0.10cm} \end{exampleblock} \begin{itemize} \item Statistical machine translation: Learn how to translate from parallel corpora. \end{itemize} \end{frame} \begin{frame}[t]{Statistical machine translation: } %\vspace{1.0cm} \begin{exampleblock}{Urdu $\rightarrow$ English} \begin{figure} {\centering \includegraphics[scale=0.55]{urdu-ref.pdf}} \end{figure} \end{exampleblock} \begin{itemize} \item Statistical machine translation: Learn how to translate from parallel corpora \end{itemize} \end{frame} \begin{frame}[t]{Statistical machine translation: state-of-the-art} %\vspace{1.0cm} \begin{exampleblock}{Urdu $\rightarrow$ English} \begin{figure} {\centering \includegraphics[scale=0.55]{urdu-bl.pdf}} \end{figure} \end{exampleblock} \begin{itemize} \item Current state-of-the-art translation models struggle with language pairs which exhibit large differences in structure. \end{itemize} \end{frame} \begin{frame}[t]{Statistical machine translation: limitations} \vspace{1.0cm} \begin{exampleblock}{Structural divergence between languages:} %\vspace{0.3cm} \begin{table} \centering \only<1>{ \begin{tabular}{|l|l|} \hline {\bf English} & {\bf Who wrote this letter?} \\ \hline Arabic & \begin{Geeza}من الذي كتب هذه الرسالة؟\end{Geeza} \\ & \textcolor{gray}{(function-word)} (who) (wrote) (this) (the-letter) \\ \hline Chinese & \begin{CJK}这封 信 是 谁 写 的 ?\end{CJK} \\ & (this) (letter) (be) (who) (write) (come-from) \textcolor{gray}{(function-word)} \\ \hline \end{tabular} } \only<2>{ \begin{tabular}{|l|l|} \hline {\bf English} & {\bf \textcolor{blue}{Who} \textcolor{green}{wrote} \textcolor{red}{this} \textcolor{orange}{letter?}} \\ \hline Arabic & \begin{Geeza}من الذي كتب هذه الرسالة؟\end{Geeza} \\ & \textcolor{gray}{(function-word)} \textcolor{blue}{(who)} \textcolor{green}{(wrote)} \textcolor{red}{(this)} \textcolor{orange}{(the-letter)} \\ \hline Chinese & \begin{CJK}这封 信 是 谁 写 的 ?\end{CJK} \\ & (this) (letter) (be) (who) (write) (come-from) \textcolor{gray}{(function-word)} \\ \hline \end{tabular} } \only<3->{ \begin{tabular}{|l|l|} \hline {\bf English} & {\bf \textcolor{blue}{Who wrote} \textcolor{red}{this letter}?} \\ \hline Arabic & \begin{Geeza}من الذي كتب هذه الرسالة؟\end{Geeza} \\ & \textcolor{gray}{(function-word)} (who) (wrote) (this) (the-letter) \\ \hline Chinese & \begin{CJK}\textcolor{red}{这封 信} \textcolor{blue}{是 谁 写} 的 ?\end{CJK} \\ & \textcolor{red}{(this) (letter)} \textcolor{blue}{(be) (who) (write) (come-from)} \textcolor{gray}{(function-word)} \\ \hline \end{tabular} } \end{table} \end{exampleblock} \only<4>{ \begin{itemize} \item Phrasal translation equivalences \item Constituent reordering \item Morphology \end{itemize} } \end{frame} \begin{frame}[t]{Statistical machine translation: successes} \begin{center} \includegraphics[scale=0.35]{GoogleTranslateLanguages.pdf} \end{center} \end{frame} \begin{frame} \frametitle{Using syntax in Machine Translation:} \footnotesize \begin{block}{Synchronous Context Free Grammar (SCFG)} \begin{figure} \begin{align*} \alert<2>{S} & \alert<2>{\rightarrow \langle X\ind{1},\ X\ind{1} \rangle} &\quad \alert<3,5>{X} & \alert<3,5>{\rightarrow \langle X\ind{1}\ X\ind{2},\ X\ind{1}\ X\ind{2} \rangle} \\ \alert<7>{X} & \alert<7>{\rightarrow \langle X\ind{1}\ X\ind{2},\ X\ind{2}\ X\ind{1} \rangle} & &\\ \alert<4>{X} & \alert<4>{\rightarrow \langle Sie,\ She \rangle} &\quad \alert<6>{X} & \alert<6>{\rightarrow \langle will,\ wants\ to \rangle} \\ \alert<8>{X} & \alert<8>{\rightarrow \langle eine\ Tasse\ Kaffee,\ a\ cup\ of\ coffee \rangle} &\quad \alert<9>{X} & \alert<9>{\rightarrow \langle trinken,\ drink\rangle} \\ \end{align*} \end{figure} \end{block} \begin{exampleblock}{Example Derivation} %\begin{figure} %\begin{align*} \center \vspace{0.2cm} \onslide<2->{\alert<2>{$S \Rightarrow \langle X\ind{1},\ X\ind{1}\ \rangle$}} \quad \onslide<3->{\alert<3>{$\Rightarrow \langle X\ind{2}\ X\ind{3},\ X\ind{2}\ X\ind{3} \rangle$ \\}} \vspace{0.2cm} \onslide<4->{\alert<4>{$\Rightarrow \langle Sie\ X\ind{3},\ She\ X\ind{3} \rangle$}} \quad \onslide<5->{\alert<5>{$\Rightarrow \langle Sie\ X\ind{4}\ X\ind{5},\ She\ X\ind{4}\ X\ind{5} \rangle$ \\}} \vspace{0.2cm} \onslide<6->{\alert<6>{$\Rightarrow \langle Sie\ will\ X\ind{5},\ She\ wants\ to\ X\ind{5} \rangle$ }} \quad \onslide<7->{\alert<7>{$\Rightarrow \langle Sie\ will\ X\ind{6} X\ind{7},\ She\ wants\ to\ X\ind{7} X\ind{6} \rangle$ \\}} \vspace{0.2cm} \onslide<8->{\alert<8>{$\Rightarrow \langle Sie\ will\ eine\ Tasse\ Kaffee\ X\ind{7},\ She\ wants\ to\ X\ind{7}\ a\ cup\ of\ coffee\rangle$} \\} \vspace{0.2cm} \onslide<9->{\alert<9>{$\Rightarrow \langle Sie\ will\ eine\ Tasse\ Kaffee\ trinken,\ She\ wants\ to\ drink\ a\ cup\ of\ coffee\rangle$}} \vspace{0.2cm} %\end{align*} %\end{figure} \end{exampleblock} \end{frame} \begin{frame}[t]{Models of translation} \begin{block}{Unlabelled SCFG: Hiero} \begin{center} \includegraphics[scale=0.55]{JeNeVeuxPasTravailler-Hiero.pdf} \hspace{0.3in} \includegraphics[scale=0.55]{JeVeuxTravailler-Hiero.pdf} \end{center} \end{block} \begin{itemize} \item Only requires the parallel corpus. \item But weak model of sentence structure. \end{itemize} \end{frame} \begin{frame}[t]{Models of translation} \begin{exampleblock}{Supervised SCFG: Syntactic Tree-to-String} \begin{center} \includegraphics[scale=0.55]{JeNeVeuxPasTravailler-tsg.pdf} \hspace{0.3in} \includegraphics[scale=0.55]{JeVeuxTravailler-tsg.pdf} \end{center} \end{exampleblock} \begin{itemize} \item Strong model of sentence structure. \item Reliant on a treebank to train the parser. \end{itemize} \end{frame} \begin{frame}[t]{Impact} \vspace{0.5in} \begin{table} \begin{tabular}{l|rr} \hline Language & Words & Domain \\ \hline English & 4.5M& Financial news \\ Chinese & 0.5M & Broadcasting news \\ Arabic & 300K (1M planned) & News \\ Korean & 54K & Military \\ \hline \end{tabular} \caption{Major treebanks: data size and domain \label{table_treebanks_size}} \end{table} \end{frame} \begin{frame}[t]{Impact} Parallel corpora far exceed treebanks (millions of words): \begin{figure} {\centering \includegraphics[scale=0.7]{resource_matrix.pdf}} \end{figure} \end{frame} \begin{frame}[t]{Models of translation} \begin{exampleblock}{Phrase extraction:} \begin{center} \only<1>{\includegraphics[scale=0.8]{PhraseExtraction6.pdf}\\[1cm]} \only<2>{\includegraphics[scale=0.8]{PhraseExtraction5.pdf}\\[1cm]} \only<3>{\includegraphics[scale=0.8]{PhraseExtraction4.pdf}\\[1cm]} \only<4>{\includegraphics[scale=0.8]{PhraseExtraction3.pdf}\\[1cm]} \only<5>{\includegraphics[scale=0.8]{PhraseExtraction2.pdf}\\[1cm]} \only<6>{\includegraphics[scale=0.8]{PhraseExtraction1.pdf}\\[1cm]} \only<7>{\includegraphics[scale=0.8]{PhraseExtraction.pdf}\\[1cm]} \end{center} \end{exampleblock} \only<2->{ \begin{unpacked_itemize} \only<2>{\item Use a word-based translation model to annotate the parallel corpus with word-alignments} \only<3->{\item $\langle$ Je, I $\rangle$, $\langle$ veux, want to $\rangle$, $\langle$ travailler, work $\rangle$}\only<4->{, $\langle$ ne veux pas, do not want to $\rangle$}\only<5->{, $\langle$ ne veux pas travailler, do not want to work $\rangle$}\only<6->{, $\langle$ Je ne veux pas, I do not want to $\rangle$}\only<7->{, $\langle$ Je ne veux pas travailler, I do not want to work $\rangle$} \end{unpacked_itemize} } \end{frame} \begin{frame}[t]{Models of translation} \begin{exampleblock}{SCFG Rule extraction:} \begin{center} \only<1>{\includegraphics[scale=0.8]{HieroExtraction1.pdf}\\[1cm]} \only<2>{\includegraphics[scale=0.8]{HieroExtraction2.pdf}\\[1cm]} \only<3>{\includegraphics[scale=0.8]{HieroExtraction3.pdf}\\[1cm]} \only<4>{\includegraphics[scale=0.8]{HieroExtraction4.pdf}\\[1cm]} \end{center} \end{exampleblock} \begin{unpacked_itemize} \only<1>{ \item X -> $\langle$ ne veux pas, do not want to $\rangle$ } \only<2>{ \item X -> $\langle$ ne veux pas, do not want to $\rangle$, \item X -> $\langle$ ne X\ind{1} pas, do not X\ind{1} $\rangle$ } \only<3>{ \item VP$/$NN -> $\langle$ ne veux pas, do not want to $\rangle$, \item VP$/$NN -> $\langle$ ne V\ind{1} pas, do not V\ind{1} $\rangle$ } \only<4>{ \item X10 -> $\langle$ ne veux pas, do not want to $\rangle$, \item X10 -> $\langle$ ne X14\ind{1} pas, do not X14\ind{1} $\rangle$ } \end{unpacked_itemize} \end{frame} \begin{frame}[t]{Workshop overview} Input: \begin{itemize} % \item Joshua decoder \item Existing procedures for unlabelled synchronous grammar extraction \end{itemize} \vspace{0.3in} Output: \begin{itemize} \item New unsupervised models for large scale synchronous grammar extraction, % \item An implementation of this model, \item A comparison and analysis of the existing and proposed models, \item Extended decoders (cdec/Joshua) capable of working efficiently with these models. \end{itemize} \end{frame} %\begin{frame}[t]{Models of translation} %\begin{block}{Hierarchical} % \begin{center} % \includegraphics[scale=0.55]{JeNeVeuxPasTravailler-Hiero.pdf} % \hspace{0.3in} % \includegraphics[scale=0.55]{JeVeuxTravailler-Hiero.pdf} % \end{center} %\end{block} %\end{frame} %\begin{frame}[t]{Impact} % \begin{center} % \includegraphics[scale=0.3]{ccb_tree.pdf} % \end{center} %\end{frame} %\begin{frame}[t]{Models of translation} %\vspace{0.25in} %\begin{block}{Hierarchical} % \begin{center} % \includegraphics[scale=0.55]{JeNeVeuxPasTravailler-Hiero-labelled.pdf} % \hspace{0.3in} % \includegraphics[scale=0.55]{JeVeuxTravailler-Hiero-labelled.pdf} % \end{center} %\end{block} %%\begin{itemize} %%\item \alert{AIM: Implement a large scale open-source synchronous constituent learning system.} %%\item \alert{AIM: Investigate and understand the relationship between the choice of synchronous grammar and SMT performance,} %%\item \alert{AIM: and fix our decoders accordingly.} %%\end{itemize} %\end{frame} % %\begin{frame}[t]{Evaluation goals} %We will predominately evaluate using BLEU, but also use automatic structured metrics and perform small scale human evaluation: %\vspace{0.25in} %\begin{unpacked_itemize} %\item Evaluate phrasal, syntactic, unsupervised syntactic, %\item Aim 1: Do no harm (not true of existing syntactic approach) %\item Aim 2: Exceed the performance of current non-syntactic systems. %\item Aim 3: Meet or exceed performance of existing syntactic systems. %\end{unpacked_itemize} %\end{frame} %\begin{frame}[t]{Impact} %Success will have a significant impact on two areas of CL: %\vspace{0.25in} %\begin{unpacked_itemize} %\item Machine translation %\begin{unpacked_itemize} % \item Make the benefits of richly structured translation models available to a much wider range of researchers and for a wider range of languages. %% \item Change the research outlook of the field. %\end{unpacked_itemize} %\item Grammar induction: %\begin{unpacked_itemize} % \item Provide an empirical validation of state-of-the-art grammar induction techniques. %\end{unpacked_itemize} %\end{unpacked_itemize} %\end{frame} \begin{frame}[t]{Workshop Streams} Expand, describing challenges faced in each stream. \vspace{0.25in} \begin{unpacked_itemize} \item Implement scalable SCFG grammar extraction algorithms. \item Improve SCFG decoders to efficiently handle the grammars produce. \item Investigate discriminative training regimes to leverage features extracted from these grammars. \end{unpacked_itemize} \end{frame} \begin{frame}[t]{Extrinsic evaluation: Bleu} \begin{exampleblock}{ \only<1>{Ngram overlap metrics:} \only<2>{Ngram overlap metrics: 1-gram precision $p_1 = \frac{11}{14}$} \only<3>{Ngram overlap metrics: 2-gram precision $p_2 = \frac{5}{13}$} \only<4>{Ngram overlap metrics: 3-gram precision $p_3 = \frac{2}{12}$} \only<5>{Ngram overlap metrics: 4-gram precision $p_4 = \frac{1}{11}$} } \vspace{0.2cm} {\em Source}: \begin{CJK}欧盟 办事处 与 澳洲 大使馆 在 同 一 建筑 内 \end{CJK} \\ \vspace{0.3cm} \only<1>{{\em Candidate}: the chinese embassy in australia and the eu representative office in the same building} \only<2>{{\em Candidate}: \alert{the} chinese \alert{embassy} \alert{in} australia \alert{and} \alert{the} \alert{eu} representative \alert{office} \alert{in} \alert{the} \alert{same} \alert{building}} \only<3>{{\em Candidate}: the chinese embassy in australia \alert{and} \alert{the} \alert{eu} representative office \alert{in} \alert{the} \alert{same} \alert{building}} \only<4>{{\em Candidate}: the chinese embassy in australia and the eu representative office \alert{in} \alert{the} \alert{same} \alert{building}} \only<5>{{\em Candidate}: the chinese embassy in australia and the eu representative office \alert{in} \alert{the} \alert{same} \alert{building}} \vspace{0.2cm} \end{exampleblock} \begin{block}{Reference Translations:} \begin{enumerate} \only<1>{\item the eu office and the australian embassy are housed in the same building} \only<2>{\item \alert{the} \alert{eu} \alert{office} \alert{and} \alert{the} australian \alert{embassy} are housed \alert{in} \alert{the} \alert{same} \alert{building}} \only<3>{\item \alert{the} \alert{eu} office \alert{and} \alert{the} australian embassy are housed \alert{in} \alert{the} \alert{same} \alert{building}} \only<4>{\item the eu office and the australian embassy are housed \alert{in} \alert{the} \alert{same} \alert{building}} \only<5>{\item the eu office and the australian embassy are housed \alert{in} \alert{the} \alert{same} \alert{building}} \only<1>{\item the european union office is in the same building as the australian embassy} \only<2>{\item \alert{the} european union \alert{office} is \alert{in} \alert{the} \alert{same} \alert{building} as \alert{the} australian \alert{embassy}} \only<3>{\item the european union office is \alert{in} \alert{the} \alert{same} \alert{building} as the australian embassy} \only<4>{\item the european union office is \alert{in} \alert{the} \alert{same} \alert{building} as the australian embassy} \only<5>{\item the european union office is \alert{in} \alert{the} \alert{same} \alert{building} as the australian embassy} \only<1>{\item the european union 's office and the australian embassy are both located in the same building} \only<2>{\item \alert{the} european union 's \alert{office} \alert{and} \alert{the} australian \alert{embassy} are both located \alert{in} \alert{the} \alert{same} \alert{building}} \only<3>{\item the european union 's office \alert{and} \alert{the} australian embassy are both located \alert{in} \alert{the} \alert{same} \alert{building}} \only<4>{\item the european union 's office and the australian embassy are both located \alert{in} \alert{the} \alert{same} \alert{building}} \only<5>{\item the european union 's office and the australian embassy are both located \alert{in} \alert{the} \alert{same} \alert{building}} \only<1>{\item the eu 's mission is in the same building with the australian embassy} \only<2>{\item \alert{the} \alert{eu} 's mission is \alert{in} \alert{the} \alert{same} \alert{building} with \alert{the} australian \alert{embassy}} \only<3>{\item \alert{the} \alert{eu} 's mission is \alert{in} \alert{the} \alert{same} \alert{building} with the australian embassy} \only<4>{\item the eu 's mission is \alert{in} \alert{the} \alert{same} \alert{building} with the australian embassy} \only<5>{\item the eu 's mission is \alert{in} \alert{the} \alert{same} \alert{building} with the australian embassy} \end{enumerate} \end{block} \end{frame} \begin{frame}[t]{Extrinsic evaluation: Bleu} \begin{exampleblock}{BLEU} \Large \begin{align} \nonumber BLEU_n = BP \times \exp{\left( \sum_{n=1}^{N} w_n \log{p_n} \right) }\\ \nonumber BP = \left\{ \begin{array}{ll} 1 & \mbox{if $c > r$} \\ \exp{(1-\frac{R'}{C'})} & \mbox{if $c <= r$} \end{array} \right. \end{align} \end{exampleblock} \begin{itemize} \item {\em BP} is the {\em Brevity Penalty}, $w_n$ is the ngram length weights (usually $\frac{1}{n}$), $p_n$ is precision of ngram predictions, $R'$ is the total length of all references and $C'$ is the sum of the best matching candidates. \item statistics are calculate over the whole {\em document}, i.e. all the sentences. \end{itemize} \end{frame} \begin{frame}[t]{Language pairs} \begin{unpacked_itemize} \item BTEC Chinese-English: \begin{itemize} \item 44k sentence pairs, short sentences \item Widely reported `prototyping' corpus \item Hiero baseline score: 57.0 (16 references) \end{itemize} \item NIST Urdu-English: \begin{itemize} \item 50k sentence pairs \item Hiero baseline score: 21.1 (4 references) \item Major challenges: major long-range reordering, SOV word order \end{itemize} \item Europarl Dutch-French: \begin{itemize} \item 100k sentence pairs, standard Europarl test sets \item Hiero baseline score: Europarl 2008 - 26.3 (1 reference) \item Major challenges: V2 / V-final word order, morphology \end{itemize} \end{unpacked_itemize} \end{frame} \begin{frame}[t]{Outline} \begin{columns} \begin{column}{0.2\textwidth} \begin{exampleblock}{} \begin{figure} \tiny {\centering \includegraphics[scale=0.07]{trevor.jpg}} \\ Trevor Cohn \\ {\centering \includegraphics[scale=0.06]{dyer.jpg}} \\ Chris Dyer\\ {\centering \includegraphics[scale=0.11]{jan.jpg}} \\ Jan Botha \\ {\centering \includegraphics[scale=0.06]{olivia.jpg}} \\ Olivia Buzek\\ {\centering \includegraphics[scale=0.10]{desai.jpg}}\\ Desai Chen\\ \end{figure} \end{exampleblock} \vspace{0.25in} \end{column} \begin{column}{0.7\textwidth} \begin{unpacked_itemize} \item 1:55pm Experimental Setup. Trevor \item 2:10pm Non-parametric models of category induction. Chris \item 2:25pm Inducing categories for morphology. Jan \item 2:35pm Smoothing, backoff and hierarchical grammars. Olivia \item 2:45pm Parametric models: posterior regularisation. Desai \item 3:00pm Break. \end{unpacked_itemize} \end{column} \end{columns} \end{frame} \begin{frame}[t]{Outline} \begin{columns} \begin{column}{0.2\textwidth} \begin{exampleblock}{} \begin{figure} \tiny {\centering \includegraphics[scale=0.05]{vlad.jpg}} \\ Vlad Eidelman\\ {\centering \includegraphics[scale=0.15]{ziyuan.pdf}} \\ Ziyuan Wang\\ {\centering \includegraphics[scale=0.06]{adam.jpg}} \\ Adam Lopez\\ {\centering \includegraphics[scale=0.10]{jon.pdf}} \\ Jon Graehl\\ {\centering \includegraphics[scale=0.15]{linh.pdf}} \\ ThuyLinh Nguyen\\ \end{figure} \end{exampleblock} \vspace{0.25in} \end{column} \begin{column}{0.7\textwidth} \begin{itemize} \setlength{\itemsep}{25pt} \setlength{\parskip}{0pt} \setlength{\parsep}{0pt} \item 3:15pm Training models with rich features spaces. Vlad \item 3:30pm Decoding with complex grammars. Adam \item 4:00pm Closing remarks. Phil \item 4:05pm Finish. \end{itemize} \end{column} \end{columns} \end{frame} \begin{frame}[t]{Remember:} \vspace{0.5in} \begin{unpacked_itemize} \item Idea: Learn synchronous grammar labels which encode substituteability; phrases which occur in the same context should receive the same label. \item Result: Better models of translation structure, morphology and improved decoding algorithms. \end{unpacked_itemize} \end{frame} \begin{frame}[t]{This slide is intentionally left blank.} \end{frame} \begin{frame}[t]{Outline} \begin{columns} \begin{column}{0.2\textwidth} \begin{exampleblock}{} \begin{figure} \tiny {\centering \includegraphics[scale=0.07]{trevor.jpg}} \\ Trevor Cohn \\ {\centering \includegraphics[scale=0.06]{dyer.jpg}} \\ Chris Dyer\\ {\centering \includegraphics[scale=0.11]{jan.jpg}} \\ Jan Botha \\ {\centering \includegraphics[scale=0.06]{olivia.jpg}} \\ Olivia Buzek\\ {\centering \includegraphics[scale=0.10]{desai.jpg}}\\ Desai Chen\\ \end{figure} \end{exampleblock} \vspace{0.25in} \end{column} \begin{column}{0.7\textwidth} \begin{unpacked_itemize} \only<1>{\item \alert{1:55pm Experimental Setup. Trevor}} \only<2->{\item 1:55pm Experimental Setup. Trevor} \only<2>{\item \alert{2:10pm Non-parametric models of category induction. Chris}} \only<1,3->{\item 2:10pm Non-parametric models of category induction. Chris} \only<3>{\item \alert{2:25pm Inducing categories for morphology. Jan}} \only<1,2,4->{\item 2:25pm Inducing categories for morphology. Jan} \only<4>{\item \alert{2:35pm Smoothing, backoff and hierarchical grammars. Olivia}} \only<1-3,5->{\item 2:35pm Smoothing, backoff and hierarchical grammars. Olivia} \only<5>{\item \alert{2:45pm Parametric models: posterior regularisation. Desai}} \only<1-4,6->{\item 2:45pm Parametric models: posterior regularisation. Desai} \only<6>{\item \alert{3:00pm Break.}} \only<1-5>{\item 3:00pm Break.} \end{unpacked_itemize} \end{column} \end{columns} \end{frame} \begin{frame}[t]{Outline} \begin{columns} \begin{column}{0.2\textwidth} \begin{exampleblock}{} \begin{figure} \tiny {\centering \includegraphics[scale=0.05]{vlad.jpg}} \\ Vlad Eidelman\\ {\centering \includegraphics[scale=0.15]{ziyuan.pdf}} \\ Ziyuan Wang\\ {\centering \includegraphics[scale=0.06]{adam.jpg}} \\ Adam Lopez\\ {\centering \includegraphics[scale=0.10]{jon.pdf}} \\ Jon Graehl\\ {\centering \includegraphics[scale=0.15]{linh.pdf}} \\ ThuyLinh Nguyen\\ \end{figure} \end{exampleblock} \vspace{0.25in} \end{column} \begin{column}{0.7\textwidth} \begin{itemize} \setlength{\itemsep}{25pt} \setlength{\parskip}{0pt} \setlength{\parsep}{0pt} \only<1>{\item \alert{3:15pm Training models with rich features spaces. Vlad}} \only<2->{\item 3:15pm Training models with rich features spaces. Vlad} \only<2>{\item \alert{3:30pm Decoding with complex grammars. Adam}} \only<1,3->{\item \alert{4:00pm Closing remarks. Phil} \only<3>{\item 4:05pm Finish.} \only<>{\item 4:05pm Finish.} \end{itemize} \end{column} \end{columns} \end{frame} \begin{frame}[t]{Statistical machine translation: state-of-the-art} %\vspace{1.0cm} \begin{exampleblock}{Urdu $\rightarrow$ English} \begin{figure} {\centering \includegraphics[scale=0.55]{urdu-bl.pdf}} \end{figure} \end{exampleblock} \begin{itemize} \item Current state-of-the-art translation models struggle with language pairs which exhibit large differences in structure. \end{itemize} \end{frame} \begin{frame}[t]{Statistical machine translation: our unsupervised grammars} %\vspace{1.0cm} \begin{exampleblock}{Urdu $\rightarrow$ English} \begin{figure} {\centering \includegraphics[scale=0.55]{urdu-25hp.pdf}} \end{figure} \end{exampleblock} \begin{itemize} \item In this workshop we've made some small steps towards better translations for difficult language pairs. \end{itemize} \only<2->{ Google Translate: \\ \hspace{0.25in} {\em *After the attack a number of local residents has blank areas.} } \end{frame} \begin{frame}[t]{Induced Translation Structure} \begin{center} \includegraphics[scale=0.32]{joshua_tree19.pdf} \end{center} \end{frame} \begin{frame}[t]{What we've achieved:} \vspace{0.5in} \begin{unpacked_itemize} \item \item \end{unpacked_itemize} \end{frame} \begin{frame}[t]{We're we'll go from here:} \vspace{0.5in} \begin{unpacked_itemize} \item \item \end{unpacked_itemize} \end{frame} \end{document}