#ifndef LM_READ_ARPA__ #define LM_READ_ARPA__ #include "lm/lm_exception.hh" #include "lm/word_index.hh" #include "lm/weights.hh" #include "util/file_piece.hh" #include <cstddef> #include <iosfwd> #include <vector> namespace lm { void ReadARPACounts(util::FilePiece &in, std::vector<uint64_t> &number); void ReadNGramHeader(util::FilePiece &in, unsigned int length); void ReadBackoff(util::FilePiece &in, Prob &weights); void ReadBackoff(util::FilePiece &in, float &backoff); inline void ReadBackoff(util::FilePiece &in, ProbBackoff &weights) { ReadBackoff(in, weights.backoff); } inline void ReadBackoff(util::FilePiece &in, RestWeights &weights) { ReadBackoff(in, weights.backoff); } void ReadEnd(util::FilePiece &in); extern const bool kARPASpaces[256]; // Positive log probability warning. class PositiveProbWarn { public: PositiveProbWarn() : action_(THROW_UP) {} explicit PositiveProbWarn(WarningAction action) : action_(action) {} void Warn(float prob); private: WarningAction action_; }; template <class Voc, class Weights> void Read1Gram(util::FilePiece &f, Voc &vocab, Weights *unigrams, PositiveProbWarn &warn) { try { float prob = f.ReadFloat(); if (prob > 0.0) { warn.Warn(prob); prob = 0.0; } if (f.get() != '\t') UTIL_THROW(FormatLoadException, "Expected tab after probability"); Weights &value = unigrams[vocab.Insert(f.ReadDelimited(kARPASpaces))]; value.prob = prob; ReadBackoff(f, value); } catch(util::Exception &e) { e << " in the 1-gram at byte " << f.Offset(); throw; } } // Return true if a positive log probability came out. template <class Voc, class Weights> void Read1Grams(util::FilePiece &f, std::size_t count, Voc &vocab, Weights *unigrams, PositiveProbWarn &warn) { ReadNGramHeader(f, 1); for (std::size_t i = 0; i < count; ++i) { Read1Gram(f, vocab, unigrams, warn); } vocab.FinishedLoading(unigrams); } // Return true if a positive log probability came out. template <class Voc, class Weights> void ReadNGram(util::FilePiece &f, const unsigned char n, const Voc &vocab, WordIndex *const reverse_indices, Weights &weights, PositiveProbWarn &warn) { try { weights.prob = f.ReadFloat(); if (weights.prob > 0.0) { warn.Warn(weights.prob); weights.prob = 0.0; } for (WordIndex *vocab_out = reverse_indices + n - 1; vocab_out >= reverse_indices; --vocab_out) { *vocab_out = vocab.Index(f.ReadDelimited(kARPASpaces)); } ReadBackoff(f, weights); } catch(util::Exception &e) { e << " in the " << static_cast<unsigned int>(n) << "-gram at byte " << f.Offset(); throw; } } } // namespace lm #endif // LM_READ_ARPA__