#ifndef LM_MODEL__ #define LM_MODEL__ #include "lm/bhiksha.hh" #include "lm/binary_format.hh" #include "lm/config.hh" #include "lm/facade.hh" #include "lm/quantize.hh" #include "lm/search_hashed.hh" #include "lm/search_trie.hh" #include "lm/state.hh" #include "lm/value.hh" #include "lm/vocab.hh" #include "lm/weights.hh" #include "util/murmur_hash.hh" #include <algorithm> #include <vector> #include <string.h> namespace util { class FilePiece; } namespace lm { namespace ngram { namespace detail { // Should return the same results as SRI. // ModelFacade typedefs Vocabulary so we use VocabularyT to avoid naming conflicts. template <class Search, class VocabularyT> class GenericModel : public base::ModelFacade<GenericModel<Search, VocabularyT>, State, VocabularyT> { private: typedef base::ModelFacade<GenericModel<Search, VocabularyT>, State, VocabularyT> P; public: // This is the model type returned by RecognizeBinary. static const ModelType kModelType; static const unsigned int kVersion = Search::kVersion; /* Get the size of memory that will be mapped given ngram counts. This * does not include small non-mapped control structures, such as this class * itself. */ static uint64_t Size(const std::vector<uint64_t> &counts, const Config &config = Config()); /* Load the model from a file. It may be an ARPA or binary file. Binary * files must have the format expected by this class or you'll get an * exception. So TrieModel can only load ARPA or binary created by * TrieModel. To classify binary files, call RecognizeBinary in * lm/binary_format.hh. */ explicit GenericModel(const char *file, const Config &config = Config()); /* Score p(new_word | in_state) and incorporate new_word into out_state. * Note that in_state and out_state must be different references: * &in_state != &out_state. */ FullScoreReturn FullScore(const State &in_state, const WordIndex new_word, State &out_state) const; /* Slower call without in_state. Try to remember state, but sometimes it * would cost too much memory or your decoder isn't setup properly. * To use this function, make an array of WordIndex containing the context * vocabulary ids in reverse order. Then, pass the bounds of the array: * [context_rbegin, context_rend). The new_word is not part of the context * array unless you intend to repeat words. */ FullScoreReturn FullScoreForgotState(const WordIndex *context_rbegin, const WordIndex *context_rend, const WordIndex new_word, State &out_state) const; /* Get the state for a context. Don't use this if you can avoid it. Use * BeginSentenceState or EmptyContextState and extend from those. If * you're only going to use this state to call FullScore once, use * FullScoreForgotState. * To use this function, make an array of WordIndex containing the context * vocabulary ids in reverse order. Then, pass the bounds of the array: * [context_rbegin, context_rend). */ void GetState(const WordIndex *context_rbegin, const WordIndex *context_rend, State &out_state) const; /* More efficient version of FullScore where a partial n-gram has already * been scored. * NOTE: THE RETURNED .rest AND .prob ARE RELATIVE TO THE .rest RETURNED BEFORE. */ FullScoreReturn ExtendLeft( // Additional context in reverse order. This will update add_rend to const WordIndex *add_rbegin, const WordIndex *add_rend, // Backoff weights to use. const float *backoff_in, // extend_left returned by a previous query. uint64_t extend_pointer, // Length of n-gram that the pointer corresponds to. unsigned char extend_length, // Where to write additional backoffs for [extend_length + 1, min(Order() - 1, return.ngram_length)] float *backoff_out, // Amount of additional content that should be considered by the next call. unsigned char &next_use) const; /* Return probabilities minus rest costs for an array of pointers. The * first length should be the length of the n-gram to which pointers_begin * points. */ float UnRest(const uint64_t *pointers_begin, const uint64_t *pointers_end, unsigned char first_length) const { // Compiler should optimize this if away. return Search::kDifferentRest ? InternalUnRest(pointers_begin, pointers_end, first_length) : 0.0; } private: friend void lm::ngram::LoadLM<>(const char *file, const Config &config, GenericModel<Search, VocabularyT> &to); static void UpdateConfigFromBinary(int fd, const std::vector<uint64_t> &counts, Config &config); FullScoreReturn ScoreExceptBackoff(const WordIndex *const context_rbegin, const WordIndex *const context_rend, const WordIndex new_word, State &out_state) const; // Score bigrams and above. Do not include backoff. void ResumeScore(const WordIndex *context_rbegin, const WordIndex *const context_rend, unsigned char starting_order_minus_2, typename Search::Node &node, float *backoff_out, unsigned char &next_use, FullScoreReturn &ret) const; // Appears after Size in the cc file. void SetupMemory(void *start, const std::vector<uint64_t> &counts, const Config &config); void InitializeFromBinary(void *start, const Parameters ¶ms, const Config &config, int fd); void InitializeFromARPA(const char *file, const Config &config); float InternalUnRest(const uint64_t *pointers_begin, const uint64_t *pointers_end, unsigned char first_length) const; Backing &MutableBacking() { return backing_; } Backing backing_; VocabularyT vocab_; Search search_; }; } // namespace detail // Instead of typedef, inherit. This allows the Model etc to be forward declared. // Oh the joys of C and C++. #define LM_COMMA() , #define LM_NAME_MODEL(name, from)\ class name : public from {\ public:\ name(const char *file, const Config &config = Config()) : from(file, config) {}\ }; LM_NAME_MODEL(ProbingModel, detail::GenericModel<detail::HashedSearch<BackoffValue> LM_COMMA() ProbingVocabulary>); LM_NAME_MODEL(RestProbingModel, detail::GenericModel<detail::HashedSearch<RestValue> LM_COMMA() ProbingVocabulary>); LM_NAME_MODEL(TrieModel, detail::GenericModel<trie::TrieSearch<DontQuantize LM_COMMA() trie::DontBhiksha> LM_COMMA() SortedVocabulary>); LM_NAME_MODEL(ArrayTrieModel, detail::GenericModel<trie::TrieSearch<DontQuantize LM_COMMA() trie::ArrayBhiksha> LM_COMMA() SortedVocabulary>); LM_NAME_MODEL(QuantTrieModel, detail::GenericModel<trie::TrieSearch<SeparatelyQuantize LM_COMMA() trie::DontBhiksha> LM_COMMA() SortedVocabulary>); LM_NAME_MODEL(QuantArrayTrieModel, detail::GenericModel<trie::TrieSearch<SeparatelyQuantize LM_COMMA() trie::ArrayBhiksha> LM_COMMA() SortedVocabulary>); // Default implementation. No real reason for it to be the default. typedef ::lm::ngram::ProbingVocabulary Vocabulary; typedef ProbingModel Model; } // namespace ngram } // namespace lm #endif // LM_MODEL__