#include "lm/model.hh" #include "lm/blank.hh" #include "lm/lm_exception.hh" #include "lm/search_hashed.hh" #include "lm/search_trie.hh" #include "lm/read_arpa.hh" #include "util/murmur_hash.hh" #include <algorithm> #include <functional> #include <numeric> #include <cmath> namespace lm { namespace ngram { namespace detail { template <class Search, class VocabularyT> const ModelType GenericModel<Search, VocabularyT>::kModelType = Search::kModelType; template <class Search, class VocabularyT> size_t GenericModel<Search, VocabularyT>::Size(const std::vector<uint64_t> &counts, const Config &config) { return VocabularyT::Size(counts[0], config) + Search::Size(counts, config); } template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::SetupMemory(void *base, const std::vector<uint64_t> &counts, const Config &config) { uint8_t *start = static_cast<uint8_t*>(base); size_t allocated = VocabularyT::Size(counts[0], config); vocab_.SetupMemory(start, allocated, counts[0], config); start += allocated; start = search_.SetupMemory(start, counts, config); if (static_cast<std::size_t>(start - static_cast<uint8_t*>(base)) != Size(counts, config)) UTIL_THROW(FormatLoadException, "The data structures took " << (start - static_cast<uint8_t*>(base)) << " but Size says they should take " << Size(counts, config)); } template <class Search, class VocabularyT> GenericModel<Search, VocabularyT>::GenericModel(const char *file, const Config &config) { LoadLM(file, config, *this); // g++ prints warnings unless these are fully initialized. State begin_sentence = State(); begin_sentence.length = 1; begin_sentence.words[0] = vocab_.BeginSentence(); begin_sentence.backoff[0] = search_.unigram.Lookup(begin_sentence.words[0]).backoff; State null_context = State(); null_context.length = 0; P::Init(begin_sentence, null_context, vocab_, search_.MiddleEnd() - search_.MiddleBegin() + 2); } template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::InitializeFromBinary(void *start, const Parameters ¶ms, const Config &config, int fd) { SetupMemory(start, params.counts, config); vocab_.LoadedBinary(params.fixed.has_vocabulary, fd, config.enumerate_vocab); search_.LoadedBinary(); } template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::InitializeFromARPA(const char *file, const Config &config) { // Backing file is the ARPA. Steal it so we can make the backing file the mmap output if any. util::FilePiece f(backing_.file.release(), file, config.messages); try { std::vector<uint64_t> counts; // File counts do not include pruned trigrams that extend to quadgrams etc. These will be fixed by search_. ReadARPACounts(f, counts); if (counts.size() > kMaxOrder) UTIL_THROW(FormatLoadException, "This model has order " << counts.size() << ". Edit lm/max_order.hh, set kMaxOrder to at least this value, and recompile."); if (counts.size() < 2) UTIL_THROW(FormatLoadException, "This ngram implementation assumes at least a bigram model."); if (config.probing_multiplier <= 1.0) UTIL_THROW(ConfigException, "probing multiplier must be > 1.0"); std::size_t vocab_size = VocabularyT::Size(counts[0], config); // Setup the binary file for writing the vocab lookup table. The search_ is responsible for growing the binary file to its needs. vocab_.SetupMemory(SetupJustVocab(config, counts.size(), vocab_size, backing_), vocab_size, counts[0], config); if (config.write_mmap) { WriteWordsWrapper wrap(config.enumerate_vocab); vocab_.ConfigureEnumerate(&wrap, counts[0]); search_.InitializeFromARPA(file, f, counts, config, vocab_, backing_); wrap.Write(backing_.file.get()); } else { vocab_.ConfigureEnumerate(config.enumerate_vocab, counts[0]); search_.InitializeFromARPA(file, f, counts, config, vocab_, backing_); } if (!vocab_.SawUnk()) { assert(config.unknown_missing != THROW_UP); // Default probabilities for unknown. search_.unigram.Unknown().backoff = 0.0; search_.unigram.Unknown().prob = config.unknown_missing_logprob; } FinishFile(config, kModelType, kVersion, counts, vocab_.UnkCountChangePadding(), backing_); } catch (util::Exception &e) { e << " Byte: " << f.Offset(); throw; } } template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::UpdateConfigFromBinary(int fd, const std::vector<uint64_t> &counts, Config &config) { util::AdvanceOrThrow(fd, VocabularyT::Size(counts[0], config)); Search::UpdateConfigFromBinary(fd, counts, config); } template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search, VocabularyT>::FullScore(const State &in_state, const WordIndex new_word, State &out_state) const { FullScoreReturn ret = ScoreExceptBackoff(in_state.words, in_state.words + in_state.length, new_word, out_state); for (const float *i = in_state.backoff + ret.ngram_length - 1; i < in_state.backoff + in_state.length; ++i) { ret.prob += *i; } return ret; } template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search, VocabularyT>::FullScoreForgotState(const WordIndex *context_rbegin, const WordIndex *context_rend, const WordIndex new_word, State &out_state) const { context_rend = std::min(context_rend, context_rbegin + P::Order() - 1); FullScoreReturn ret = ScoreExceptBackoff(context_rbegin, context_rend, new_word, out_state); // Add the backoff weights for n-grams of order start to (context_rend - context_rbegin). unsigned char start = ret.ngram_length; if (context_rend - context_rbegin < static_cast<std::ptrdiff_t>(start)) return ret; if (start <= 1) { ret.prob += search_.unigram.Lookup(*context_rbegin).backoff; start = 2; } typename Search::Node node; if (!search_.FastMakeNode(context_rbegin, context_rbegin + start - 1, node)) { return ret; } float backoff; // i is the order of the backoff we're looking for. typename Search::MiddleIter mid_iter = search_.MiddleBegin() + start - 2; for (const WordIndex *i = context_rbegin + start - 1; i < context_rend; ++i, ++mid_iter) { if (!search_.LookupMiddleNoProb(*mid_iter, *i, backoff, node)) break; ret.prob += backoff; } return ret; } template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::GetState(const WordIndex *context_rbegin, const WordIndex *context_rend, State &out_state) const { // Generate a state from context. context_rend = std::min(context_rend, context_rbegin + P::Order() - 1); if (context_rend == context_rbegin) { out_state.length = 0; return; } FullScoreReturn ignored; typename Search::Node node; search_.LookupUnigram(*context_rbegin, out_state.backoff[0], node, ignored); out_state.length = HasExtension(out_state.backoff[0]) ? 1 : 0; float *backoff_out = out_state.backoff + 1; typename Search::MiddleIter mid(search_.MiddleBegin()); for (const WordIndex *i = context_rbegin + 1; i < context_rend; ++i, ++backoff_out, ++mid) { if (!search_.LookupMiddleNoProb(*mid, *i, *backoff_out, node)) { std::copy(context_rbegin, context_rbegin + out_state.length, out_state.words); return; } if (HasExtension(*backoff_out)) out_state.length = i - context_rbegin + 1; } std::copy(context_rbegin, context_rbegin + out_state.length, out_state.words); } template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search, VocabularyT>::ExtendLeft( const WordIndex *add_rbegin, const WordIndex *add_rend, const float *backoff_in, uint64_t extend_pointer, unsigned char extend_length, float *backoff_out, unsigned char &next_use) const { FullScoreReturn ret; float subtract_me; typename Search::Node node(search_.Unpack(extend_pointer, extend_length, subtract_me)); ret.prob = subtract_me; ret.ngram_length = extend_length; next_use = 0; // If this function is called, then it does depend on left words. ret.independent_left = false; ret.extend_left = extend_pointer; typename Search::MiddleIter mid_iter(search_.MiddleBegin() + extend_length - 1); const WordIndex *i = add_rbegin; for (; ; ++i, ++backoff_out, ++mid_iter) { if (i == add_rend) { // Ran out of words. for (const float *b = backoff_in + ret.ngram_length - extend_length; b < backoff_in + (add_rend - add_rbegin); ++b) ret.prob += *b; ret.prob -= subtract_me; return ret; } if (mid_iter == search_.MiddleEnd()) break; if (ret.independent_left || !search_.LookupMiddle(*mid_iter, *i, *backoff_out, node, ret)) { // Didn't match a word. ret.independent_left = true; for (const float *b = backoff_in + ret.ngram_length - extend_length; b < backoff_in + (add_rend - add_rbegin); ++b) ret.prob += *b; ret.prob -= subtract_me; return ret; } ret.ngram_length = mid_iter - search_.MiddleBegin() + 2; if (HasExtension(*backoff_out)) next_use = i - add_rbegin + 1; } if (ret.independent_left || !search_.LookupLongest(*i, ret.prob, node)) { // The last backoff weight, for Order() - 1. ret.prob += backoff_in[i - add_rbegin]; } else { ret.ngram_length = P::Order(); } ret.independent_left = true; ret.prob -= subtract_me; return ret; } namespace { // Do a paraonoid copy of history, assuming new_word has already been copied // (hence the -1). out_state.length could be zero so I avoided using // std::copy. void CopyRemainingHistory(const WordIndex *from, State &out_state) { WordIndex *out = out_state.words + 1; const WordIndex *in_end = from + static_cast<ptrdiff_t>(out_state.length) - 1; for (const WordIndex *in = from; in < in_end; ++in, ++out) *out = *in; } } // namespace /* Ugly optimized function. Produce a score excluding backoff. * The search goes in increasing order of ngram length. * Context goes backward, so context_begin is the word immediately preceeding * new_word. */ template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search, VocabularyT>::ScoreExceptBackoff( const WordIndex *context_rbegin, const WordIndex *context_rend, const WordIndex new_word, State &out_state) const { FullScoreReturn ret; // ret.ngram_length contains the last known non-blank ngram length. ret.ngram_length = 1; float *backoff_out(out_state.backoff); typename Search::Node node; search_.LookupUnigram(new_word, *backoff_out, node, ret); // This is the length of the context that should be used for continuation to the right. out_state.length = HasExtension(*backoff_out) ? 1 : 0; // We'll write the word anyway since it will probably be used and does no harm being there. out_state.words[0] = new_word; if (context_rbegin == context_rend) return ret; ++backoff_out; // Ok start by looking up the bigram. const WordIndex *hist_iter = context_rbegin; typename Search::MiddleIter mid_iter(search_.MiddleBegin()); for (; ; ++mid_iter, ++hist_iter, ++backoff_out) { if (hist_iter == context_rend) { // Ran out of history. Typically no backoff, but this could be a blank. CopyRemainingHistory(context_rbegin, out_state); // ret.prob was already set. return ret; } if (mid_iter == search_.MiddleEnd()) break; if (ret.independent_left || !search_.LookupMiddle(*mid_iter, *hist_iter, *backoff_out, node, ret)) { // Didn't find an ngram using hist_iter. CopyRemainingHistory(context_rbegin, out_state); // ret.prob was already set. ret.independent_left = true; return ret; } ret.ngram_length = hist_iter - context_rbegin + 2; if (HasExtension(*backoff_out)) { out_state.length = ret.ngram_length; } } // It passed every lookup in search_.middle. All that's left is to check search_.longest. if (!ret.independent_left && search_.LookupLongest(*hist_iter, ret.prob, node)) { // It's an P::Order()-gram. // There is no blank in longest_. ret.ngram_length = P::Order(); } // This handles (N-1)-grams and N-grams. CopyRemainingHistory(context_rbegin, out_state); ret.independent_left = true; return ret; } template class GenericModel<ProbingHashedSearch, ProbingVocabulary>; // HASH_PROBING template class GenericModel<trie::TrieSearch<DontQuantize, trie::DontBhiksha>, SortedVocabulary>; // TRIE_SORTED template class GenericModel<trie::TrieSearch<DontQuantize, trie::ArrayBhiksha>, SortedVocabulary>; template class GenericModel<trie::TrieSearch<SeparatelyQuantize, trie::DontBhiksha>, SortedVocabulary>; // TRIE_SORTED_QUANT template class GenericModel<trie::TrieSearch<SeparatelyQuantize, trie::ArrayBhiksha>, SortedVocabulary>; } // namespace detail } // namespace ngram } // namespace lm