#include <boost/mpi/communicator.hpp> #include "timing.h" #include "mpi-pyp-topics.hh" //#include <boost/date_time/posix_time/posix_time_types.hpp> void MPIPYPTopics::sample_corpus(const Corpus& corpus, int samples, int freq_cutoff_start, int freq_cutoff_end, int freq_cutoff_interval, int max_contexts_per_document) { Timer timer; std::cout << m_am_root << std::endl; int documents = corpus.num_documents(); m_mpi_start = 0; m_mpi_end = documents; if (m_size != 1) { assert(documents < std::numeric_limits<int>::max()); m_mpi_start = (documents / m_size) * m_rank; if (m_rank == m_size-1) m_mpi_end = documents; else m_mpi_end = (documents / m_size)*(m_rank+1); } int local_documents = m_mpi_end - m_mpi_start; if (!m_backoff.get()) { m_word_pyps.clear(); m_word_pyps.push_back(MPIPYPs()); } if (m_am_root) std::cerr << "\n Training with " << m_word_pyps.size()-1 << " backoff level" << (m_word_pyps.size()>1 ? ":" : "s:") << std::endl; for (int i=0; i<(int)m_word_pyps.size(); ++i) { m_word_pyps.at(i).reserve(m_num_topics); for (int j=0; j<m_num_topics; ++j) m_word_pyps.at(i).push_back(new MPIPYP<int>(0.5, 1.0)); } if (m_am_root) std::cerr << std::endl; m_document_pyps.reserve(local_documents); //m_document_pyps.reserve(corpus.num_documents()); //for (int j=0; j<corpus.num_documents(); ++j) for (int j=0; j<local_documents; ++j) m_document_pyps.push_back(new PYP<int>(0.5, 1.0)); m_topic_p0 = 1.0/m_num_topics; m_term_p0 = 1.0/corpus.num_types(); m_backoff_p0 = 1.0/corpus.num_documents(); if (m_am_root) std::cerr << " Documents: " << corpus.num_documents() << "(" << local_documents << ")" << " Terms: " << corpus.num_types() << std::endl; int frequency_cutoff = freq_cutoff_start; if (m_am_root) std::cerr << " Context frequency cutoff set to " << frequency_cutoff << std::endl; timer.Reset(); // Initialisation pass int document_id=0, topic_counter=0; for (int i=0; i<local_documents; ++i) { document_id = i+m_mpi_start; //for (Corpus::const_iterator corpusIt=corpus.begin(); // corpusIt != corpus.end(); ++corpusIt, ++document_id) { m_corpus_topics.push_back(DocumentTopics(corpus.at(document_id).size(), 0)); int term_index=0; for (Document::const_iterator docIt=corpus.at(document_id).begin(); docIt != corpus.at(document_id).end(); ++docIt, ++term_index) { topic_counter++; Term term = *docIt; // sample a new_topic //int new_topic = (topic_counter % m_num_topics); int freq = corpus.context_count(term); int new_topic = -1; if (freq > frequency_cutoff && (!max_contexts_per_document || term_index < max_contexts_per_document)) { new_topic = document_id % m_num_topics; // add the new topic to the PYPs increment(term, new_topic); if (m_use_topic_pyp) { F p0 = m_topic_pyp.prob(new_topic, m_topic_p0); int table_delta = m_document_pyps.at(i).increment(new_topic, p0); if (table_delta) m_topic_pyp.increment(new_topic, m_topic_p0, rnd); } else m_document_pyps.at(i).increment(new_topic, m_topic_p0); } m_corpus_topics.at(i).at(term_index) = new_topic; } } // Synchronise the topic->word counds across the processes. synchronise(); if (m_am_root) std::cerr << " Initialized in " << timer.Elapsed() << " seconds\n"; int* randomDocIndices = new int[local_documents]; for (int i = 0; i < local_documents; ++i) randomDocIndices[i] = i; // Sampling phase for (int curr_sample=0; curr_sample < samples; ++curr_sample) { if (freq_cutoff_interval > 0 && curr_sample != 1 && curr_sample % freq_cutoff_interval == 1 && frequency_cutoff > freq_cutoff_end) { frequency_cutoff--; if (m_am_root) std::cerr << "\n Context frequency cutoff set to " << frequency_cutoff << std::endl; } if (m_am_root) std::cerr << "\n -- Sample " << curr_sample << " "; std::cerr.flush(); // Randomize the corpus indexing array int tmp; int processed_terms=0; for (int i = (local_documents-1); i > 0; --i) { //i+1 since j \in [0,i] but rnd() \in [0,1) int j = (int)(rnd() * (i+1)); assert(j >= 0 && j <= i); tmp = randomDocIndices[i]; randomDocIndices[i] = randomDocIndices[j]; randomDocIndices[j] = tmp; } // for each document in the corpus for (int rand_doc=0; rand_doc<local_documents; ++rand_doc) { int doc_index = randomDocIndices[rand_doc]; int document_id = doc_index + m_mpi_start; const Document& doc = corpus.at(document_id); // for each term in the document int term_index=0; Document::const_iterator docEnd = doc.end(); for (Document::const_iterator docIt=doc.begin(); docIt != docEnd; ++docIt, ++term_index) { if (max_contexts_per_document && term_index > max_contexts_per_document) break; Term term = *docIt; int freq = corpus.context_count(term); if (freq < frequency_cutoff) continue; processed_terms++; // remove the prevous topic from the PYPs int current_topic = m_corpus_topics.at(doc_index).at(term_index); // a negative label mean that term hasn't been sampled yet if (current_topic >= 0) { decrement(term, current_topic); int table_delta = m_document_pyps.at(doc_index).decrement(current_topic); if (m_use_topic_pyp && table_delta < 0) m_topic_pyp.decrement(current_topic, rnd); } // sample a new_topic int new_topic = sample(doc_index, term); // add the new topic to the PYPs m_corpus_topics.at(doc_index).at(term_index) = new_topic; increment(term, new_topic); if (m_use_topic_pyp) { F p0 = m_topic_pyp.prob(new_topic, m_topic_p0); int table_delta = m_document_pyps.at(doc_index).increment(new_topic, p0); if (table_delta) m_topic_pyp.increment(new_topic, m_topic_p0, rnd); } else m_document_pyps.at(doc_index).increment(new_topic, m_topic_p0); } if (document_id && document_id % 10000 == 0) { if (m_am_root) std::cerr << "."; std::cerr.flush(); } } std::cerr << "|"; std::cerr.flush(); // Synchronise the topic->word counds across the processes. synchronise(); if (m_am_root) std::cerr << " ||| sampled " << processed_terms << " terms."; if (curr_sample != 0 && curr_sample % 10 == 0) { if (m_am_root) std::cerr << " ||| time=" << (timer.Elapsed() / 10.0) << " sec/sample" << std::endl; timer.Reset(); if (m_am_root) std::cerr << " ... Resampling hyperparameters"; std::cerr.flush(); // resample the hyperparamters F log_p=0.0; for (std::vector<MPIPYPs>::iterator levelIt=m_word_pyps.begin(); levelIt != m_word_pyps.end(); ++levelIt) { for (MPIPYPs::iterator pypIt=levelIt->begin(); pypIt != levelIt->end(); ++pypIt) { pypIt->resample_prior(rnd); log_p += pypIt->log_restaurant_prob(); } } for (PYPs::iterator pypIt=m_document_pyps.begin(); pypIt != m_document_pyps.end(); ++pypIt) { pypIt->resample_prior(rnd); log_p += pypIt->log_restaurant_prob(); } if (m_use_topic_pyp) { m_topic_pyp.resample_prior(rnd); log_p += m_topic_pyp.log_restaurant_prob(); } std::cerr.precision(10); if (m_am_root) std::cerr << " ||| LLH=" << log_p << " ||| resampling time=" << timer.Elapsed() << " sec" << std::endl; timer.Reset(); int k=0; if (m_am_root) std::cerr << "Topics distribution: "; std::cerr.precision(2); for (MPIPYPs::iterator pypIt=m_word_pyps.front().begin(); pypIt != m_word_pyps.front().end(); ++pypIt, ++k) { if (m_am_root && k % 5 == 0) std::cerr << std::endl << '\t'; if (m_am_root) std::cerr << "<" << k << ":" << pypIt->num_customers() << "," << pypIt->num_types() << "," << m_topic_pyp.prob(k, m_topic_p0) << "> "; } std::cerr.precision(4); if (m_am_root) std::cerr << std::endl; } } delete [] randomDocIndices; } void MPIPYPTopics::synchronise() { // Synchronise the topic->word counds across the processes. //for (std::vector<MPIPYPs>::iterator levelIt=m_word_pyps.begin(); // levelIt != m_word_pyps.end(); ++levelIt) { // std::vector<MPIPYPs>::iterator levelIt=m_word_pyps.begin(); // { // for (MPIPYPs::iterator pypIt=levelIt->begin(); pypIt != levelIt->end(); ++pypIt) { for (size_t label=0; label < m_word_pyps.at(0).size(); ++label) { MPIPYP<int>& pyp = m_word_pyps.at(0).at(label); //if (!m_am_root) boost::mpi::communicator().barrier(); //std::cerr << "Before Sync Process " << m_rank << ":"; //pyp.debug_info(std::cerr); std::cerr << std::endl; //if (m_am_root) boost::mpi::communicator().barrier(); MPIPYP<int>::dish_delta_type delta; pyp.synchronise(&delta); for (MPIPYP<int>::dish_delta_type::const_iterator it=delta.begin(); it != delta.end(); ++it) { int count = it->second; if (count > 0) for (int i=0; i < count; ++i) increment(it->first, label); if (count < 0) for (int i=0; i > count; --i) decrement(it->first, label); } pyp.reset_deltas(); //if (!m_am_root) boost::mpi::communicator().barrier(); //std::cerr << "After Sync Process " << m_rank << ":"; //pyp.debug_info(std::cerr); std::cerr << std::endl; //if (m_am_root) boost::mpi::communicator().barrier(); } // } } void MPIPYPTopics::decrement(const Term& term, int topic, int level) { //std::cerr << "MPIPYPTopics::decrement(" << term << "," << topic << "," << level << ")" << std::endl; m_word_pyps.at(level).at(topic).decrement(term, rnd); if (m_backoff.get()) { Term backoff_term = (*m_backoff)[term]; if (!m_backoff->is_null(backoff_term)) decrement(backoff_term, topic, level+1); } } void MPIPYPTopics::increment(const Term& term, int topic, int level) { //std::cerr << "MPIPYPTopics::increment(" << term << "," << topic << "," << level << ")" << std::endl; m_word_pyps.at(level).at(topic).increment(term, word_pyps_p0(term, topic, level), rnd); if (m_backoff.get()) { Term backoff_term = (*m_backoff)[term]; if (!m_backoff->is_null(backoff_term)) increment(backoff_term, topic, level+1); } } int MPIPYPTopics::sample(const DocumentId& doc, const Term& term) { // First pass: collect probs F sum=0.0; std::vector<F> sums; for (int k=0; k<m_num_topics; ++k) { F p_w_k = prob(term, k); F topic_prob = m_topic_p0; if (m_use_topic_pyp) topic_prob = m_topic_pyp.prob(k, m_topic_p0); //F p_k_d = m_document_pyps[doc].prob(k, topic_prob); F p_k_d = m_document_pyps.at(doc).unnormalised_prob(k, topic_prob); sum += (p_w_k*p_k_d); sums.push_back(sum); } // Second pass: sample a topic F cutoff = rnd() * sum; for (int k=0; k<m_num_topics; ++k) { if (cutoff <= sums[k]) return k; } std::cerr << cutoff << " " << sum << std::endl; assert(false); } MPIPYPTopics::F MPIPYPTopics::word_pyps_p0(const Term& term, int topic, int level) const { //for (int i=0; i<level+1; ++i) std::cerr << " "; //std::cerr << "MPIPYPTopics::word_pyps_p0(" << term << "," << topic << "," << level << ")" << std::endl; F p0 = m_term_p0; if (m_backoff.get()) { //static F fudge=m_backoff_p0; // TODO Term backoff_term = (*m_backoff)[term]; if (!m_backoff->is_null(backoff_term)) { assert (level < m_backoff->order()); p0 = (1.0/(double)m_backoff->terms_at_level(level))*prob(backoff_term, topic, level+1); } else p0 = m_term_p0; } //for (int i=0; i<level+1; ++i) std::cerr << " "; //std::cerr << "MPIPYPTopics::word_pyps_p0(" << term << "," << topic << "," << level << ") = " << p0 << std::endl; return p0; } MPIPYPTopics::F MPIPYPTopics::prob(const Term& term, int topic, int level) const { //for (int i=0; i<level+1; ++i) std::cerr << " "; //std::cerr << "MPIPYPTopics::prob(" << term << "," << topic << "," << level << " " << factor << ")" << std::endl; F p0 = word_pyps_p0(term, topic, level); F p_w_k = m_word_pyps.at(level).at(topic).prob(term, p0); //for (int i=0; i<level+1; ++i) std::cerr << " "; //std::cerr << "MPIPYPTopics::prob(" << term << "," << topic << "," << level << ") = " << p_w_k << std::endl; return p_w_k; } int MPIPYPTopics::max_topic() const { if (!m_use_topic_pyp) return -1; F current_max=0.0; int current_topic=-1; for (int k=0; k<m_num_topics; ++k) { F prob = m_topic_pyp.prob(k, m_topic_p0); if (prob > current_max) { current_max = prob; current_topic = k; } } assert(current_topic >= 0); return current_topic; } int MPIPYPTopics::max(const DocumentId& true_doc) const { //std::cerr << "MPIPYPTopics::max(" << doc << "," << term << ")" << std::endl; // collect probs F current_max=0.0; DocumentId local_doc = true_doc - m_mpi_start; int current_topic=-1; for (int k=0; k<m_num_topics; ++k) { //F p_w_k = prob(term, k); F topic_prob = m_topic_p0; if (m_use_topic_pyp) topic_prob = m_topic_pyp.prob(k, m_topic_p0); F prob = 0; if (local_doc < 0) prob = topic_prob; else prob = m_document_pyps.at(local_doc).prob(k, topic_prob); if (prob > current_max) { current_max = prob; current_topic = k; } } assert(current_topic >= 0); return current_topic; } int MPIPYPTopics::max(const DocumentId& true_doc, const Term& term) const { //std::cerr << "MPIPYPTopics::max(" << doc << "," << term << ")" << std::endl; // collect probs F current_max=0.0; DocumentId local_doc = true_doc - m_mpi_start; int current_topic=-1; for (int k=0; k<m_num_topics; ++k) { F p_w_k = prob(term, k); F topic_prob = m_topic_p0; if (m_use_topic_pyp) topic_prob = m_topic_pyp.prob(k, m_topic_p0); F p_k_d = 0; if (local_doc < 0) p_k_d = topic_prob; else p_k_d = m_document_pyps.at(local_doc).prob(k, topic_prob); F prob = (p_w_k*p_k_d); if (prob > current_max) { current_max = prob; current_topic = k; } } assert(current_topic >= 0); return current_topic; } std::ostream& MPIPYPTopics::print_document_topics(std::ostream& out) const { for (CorpusTopics::const_iterator corpusIt=m_corpus_topics.begin(); corpusIt != m_corpus_topics.end(); ++corpusIt) { int term_index=0; for (DocumentTopics::const_iterator docIt=corpusIt->begin(); docIt != corpusIt->end(); ++docIt, ++term_index) { if (term_index) out << " "; out << *docIt; } out << std::endl; } return out; } std::ostream& MPIPYPTopics::print_topic_terms(std::ostream& out) const { for (PYPs::const_iterator pypsIt=m_word_pyps.front().begin(); pypsIt != m_word_pyps.front().end(); ++pypsIt) { int term_index=0; for (PYP<int>::const_iterator termIt=pypsIt->begin(); termIt != pypsIt->end(); ++termIt, ++term_index) { if (term_index) out << " "; out << termIt->first << ":" << termIt->second; } out << std::endl; } return out; }