import sys import scipy.optimize from numpy import * from numpy.random import random # # Step 1: load the concordance counts # edges_phrase_to_context = [] edges_context_to_phrase = [] types = {} context_types = {} num_edges = 0 for line in sys.stdin: phrase, rest = line.strip().split('\t') parts = rest.split('|||') edges_phrase_to_context.append((phrase, [])) for i in range(0, len(parts), 2): context, count = parts[i:i+2] ctx = tuple(filter(lambda x: x != '<PHRASE>', context.split())) cnt = int(count.strip()[2:]) edges_phrase_to_context[-1][1].append((ctx, cnt)) cid = context_types.get(ctx, len(context_types)) if cid == len(context_types): context_types[ctx] = cid edges_context_to_phrase.append((ctx, [])) edges_context_to_phrase[cid][1].append((phrase, cnt)) for token in ctx: types.setdefault(token, len(types)) for token in phrase.split(): types.setdefault(token, len(types)) num_edges += 1 print 'Read in', num_edges, 'edges and', len(types), 'word types' print 'edges_phrase_to_context', edges_phrase_to_context # # Step 2: initialise the model parameters # num_tags = 10 num_types = len(types) num_phrases = len(edges_phrase_to_context) num_contexts = len(edges_context_to_phrase) delta = int(sys.argv[1]) gamma = int(sys.argv[2]) def normalise(a): return a / float(sum(a)) # Pr(tag | phrase) tagDist = [normalise(random(num_tags)+1) for p in range(num_phrases)] #tagDist = [normalise(array(range(1,num_tags+1))) for p in range(num_phrases)] # Pr(context at pos i = w | tag) indexed by i, tag, word #contextWordDist = [[normalise(array(range(1,num_types+1))) for t in range(num_tags)] for i in range(4)] contextWordDist = [[normalise(random(num_types)+1) for t in range(num_tags)] for i in range(4)] # PR langrange multipliers lamba = zeros(2 * num_edges * num_tags) omega_offset = num_edges * num_tags lamba_index = {} next = 0 for phrase, ccs in edges_phrase_to_context: for context, count in ccs: lamba_index[phrase,context] = next next += num_tags #print lamba_index # # Step 3: expectation maximisation # for iteration in range(20): tagCounts = [zeros(num_tags) for p in range(num_phrases)] contextWordCounts = [[zeros(num_types) for t in range(num_tags)] for i in range(4)] #print 'tagDist', tagDist #print 'contextWordCounts[0][0]', contextWordCounts[0][0] # Tune lambda # dual: min log Z(lamba) s.t. lamba >= 0; # sum_c lamba_pct <= delta; sum_p lamba_pct <= gamma def dual(ls): logz = 0 for p, (phrase, ccs) in enumerate(edges_phrase_to_context): for context, count in ccs: conditionals = zeros(num_tags) for t in range(num_tags): prob = tagDist[p][t] for i in range(4): prob *= contextWordDist[i][t][types[context[i]]] conditionals[t] = prob cz = sum(conditionals) conditionals /= cz #print 'dual', phrase, context, count, 'p =', conditionals local_z = 0 for t in range(num_tags): li = lamba_index[phrase,context] + t local_z += conditionals[t] * exp(-ls[li] - ls[omega_offset+li]) logz += log(local_z) * count #print 'ls', ls #print 'lambda', list(ls) #print 'dual', logz return logz def loglikelihood(): llh = 0 for p, (phrase, ccs) in enumerate(edges_phrase_to_context): for context, count in ccs: conditionals = zeros(num_tags) for t in range(num_tags): prob = tagDist[p][t] for i in range(4): prob *= contextWordDist[i][t][types[context[i]]] conditionals[t] = prob cz = sum(conditionals) llh += log(cz) * count return llh def primal(ls): # FIXME: returns negative values for KL (impossible) logz = dual(ls) expectations = -dual_deriv(ls) kl = -logz - dot(ls, expectations) llh = loglikelihood() pt_l1linf = 0 for phrase, ccs in edges_phrase_to_context: for t in range(num_tags): best = -1e500 for context, count in ccs: li = lamba_index[phrase,context] + t s = expectations[li] if s > best: best = s pt_l1linf += best ct_l1linf = 0 for context, pcs in edges_context_to_phrase: for t in range(num_tags): best = -1e500 for phrase, count in pcs: li = omega_offset + lamba_index[phrase,context] + t s = expectations[li] if s > best: best = s ct_l1linf += best return llh, kl, pt_l1linf, ct_l1linf, llh - kl - delta * pt_l1linf - gamma * ct_l1linf def dual_deriv(ls): # d/dl log(z) = E_q[phi] deriv = zeros(2 * num_edges * num_tags) for p, (phrase, ccs) in enumerate(edges_phrase_to_context): for context, count in ccs: conditionals = zeros(num_tags) for t in range(num_tags): prob = tagDist[p][t] for i in range(4): prob *= contextWordDist[i][t][types[context[i]]] conditionals[t] = prob cz = sum(conditionals) conditionals /= cz scores = zeros(num_tags) for t in range(num_tags): li = lamba_index[phrase,context] + t scores[t] = conditionals[t] * exp(-ls[li] - ls[omega_offset + li]) local_z = sum(scores) #print 'ddual', phrase, context, count, 'q =', scores / local_z for t in range(num_tags): deriv[lamba_index[phrase,context] + t] -= count * scores[t] / local_z deriv[omega_offset + lamba_index[phrase,context] + t] -= count * scores[t] / local_z #print 'ddual', list(deriv) return deriv def constraints(ls): cons = zeros(num_phrases * num_tags + num_edges * num_tags) index = 0 for phrase, ccs in edges_phrase_to_context: for t in range(num_tags): if delta > 0: total = delta for cprime, count in ccs: total -= ls[lamba_index[phrase, cprime] + t] cons[index] = total index += 1 for context, pcs in edges_context_to_phrase: for t in range(num_tags): if gamma > 0: total = gamma for pprime, count in pcs: total -= ls[omega_offset + lamba_index[pprime, context] + t] cons[index] = total index += 1 #print 'cons', cons return cons def constraints_deriv(ls): cons = zeros((num_phrases * num_tags + num_edges * num_tags, 2 * num_edges * num_tags)) index = 0 for phrase, ccs in edges_phrase_to_context: for t in range(num_tags): if delta > 0: d = cons[index,:]#zeros(num_edges * num_tags) for cprime, count in ccs: d[lamba_index[phrase, cprime] + t] = -1 #cons[index] = d index += 1 for context, pcs in edges_context_to_phrase: for t in range(num_tags): if gamma > 0: d = cons[index,:]#d = zeros(num_edges * num_tags) for pprime, count in pcs: d[omega_offset + lamba_index[pprime, context] + t] = -1 #cons[index] = d index += 1 #print 'dcons', cons return cons print 'Pre lambda optimisation dual', dual(lamba), 'primal', primal(lamba) #print 'lambda', lamba, lamba.shape #print 'bounds', [(0, max(delta, gamma))] * (2 * num_edges * num_tags) lamba = scipy.optimize.fmin_slsqp(dual, lamba, bounds=[(0, max(delta, gamma))] * (2 * num_edges * num_tags), f_ieqcons=constraints, fprime=dual_deriv, fprime_ieqcons=constraints_deriv, iprint=0) print 'Post lambda optimisation dual', dual(lamba), 'primal', primal(lamba) # E-step llh = log_z = 0 for p, (phrase, ccs) in enumerate(edges_phrase_to_context): for context, count in ccs: conditionals = zeros(num_tags) for t in range(num_tags): prob = tagDist[p][t] for i in range(4): prob *= contextWordDist[i][t][types[context[i]]] conditionals[t] = prob cz = sum(conditionals) conditionals /= cz llh += log(cz) * count q = zeros(num_tags) li = lamba_index[phrase, context] for t in range(num_tags): q[t] = conditionals[t] * exp(-lamba[li + t] - lamba[omega_offset + li + t]) qz = sum(q) log_z += count * log(qz) for t in range(num_tags): tagCounts[p][t] += count * q[t] / qz for i in range(4): for t in range(num_tags): contextWordCounts[i][t][types[context[i]]] += count * q[t] / qz print 'iteration', iteration, 'llh', llh, 'logz', log_z # M-step for p in range(num_phrases): tagDist[p] = normalise(tagCounts[p]) for i in range(4): for t in range(num_tags): contextWordDist[i][t] = normalise(contextWordCounts[i][t]) for p, (phrase, ccs) in enumerate(edges_phrase_to_context): for context, count in ccs: conditionals = zeros(num_tags) for t in range(num_tags): prob = tagDist[p][t] for i in range(4): prob *= contextWordDist[i][t][types[context[i]]] conditionals[t] = prob cz = sum(conditionals) conditionals /= cz print '%s\t%s ||| C=%d |||' % (phrase, context, argmax(conditionals)), conditionals