#ifndef _QUASI_MODEL2_H_ #define _QUASI_MODEL2_H_ #include <vector> #include <cmath> #include <tr1/unordered_map> #include "boost/functional.hpp" #include "prob.h" #include "array2d.h" #include "slice_sampler.h" #include "m.h" #include "have_64_bits.h" struct AlignmentObservation { AlignmentObservation() : src_len(), trg_len(), j(), a_j() {} AlignmentObservation(unsigned sl, unsigned tl, unsigned tw, unsigned sw) : src_len(sl), trg_len(tl), j(tw), a_j(sw) {} unsigned short src_len; unsigned short trg_len; unsigned short j; unsigned short a_j; }; #ifdef HAVE_64_BITS inline size_t hash_value(const AlignmentObservation& o) { return reinterpret_cast<const size_t&>(o); } inline bool operator==(const AlignmentObservation& a, const AlignmentObservation& b) { return hash_value(a) == hash_value(b); } #else inline size_t hash_value(const AlignmentObservation& o) { size_t h = 1; boost::hash_combine(h, o.src_len); boost::hash_combine(h, o.trg_len); boost::hash_combine(h, o.j); boost::hash_combine(h, o.a_j); return h; } #endif struct QuasiModel2 { explicit QuasiModel2(double alpha, double pnull = 0.1) : alpha_(alpha), pnull_(pnull), pnotnull_(1 - pnull) {} // a_j = 0 => NULL; src_len does *not* include null prob_t Prob(unsigned a_j, unsigned j, unsigned src_len, unsigned trg_len) const { if (!a_j) return pnull_; return pnotnull_ * prob_t(UnnormalizedProb(a_j, j, src_len, trg_len, alpha_) / GetOrComputeZ(j, src_len, trg_len)); } void Increment(unsigned a_j, unsigned j, unsigned src_len, unsigned trg_len) { assert(a_j <= src_len); assert(j < trg_len); ++obs_[AlignmentObservation(src_len, trg_len, j, a_j)]; } void Decrement(unsigned a_j, unsigned j, unsigned src_len, unsigned trg_len) { const AlignmentObservation ao(src_len, trg_len, j, a_j); int &cc = obs_[ao]; assert(cc > 0); --cc; if (!cc) obs_.erase(ao); } struct PNullResampler { PNullResampler(const QuasiModel2& m) : m_(m) {} const QuasiModel2& m_; double operator()(const double& proposed_pnull) const { return log(m_.Likelihood(m_.alpha_, proposed_pnull)); } }; struct AlphaResampler { AlphaResampler(const QuasiModel2& m) : m_(m) {} const QuasiModel2& m_; double operator()(const double& proposed_alpha) const { return log(m_.Likelihood(proposed_alpha, m_.pnull_.as_float())); } }; void ResampleHyperparameters(MT19937* rng, const unsigned nloop = 5, const unsigned niterations = 10) { const PNullResampler dr(*this); const AlphaResampler ar(*this); for (unsigned i = 0; i < nloop; ++i) { double pnull = slice_sampler1d(dr, pnull_.as_float(), *rng, 0.00000001, 1.0, 0.0, niterations, 100*niterations); pnull_ = prob_t(pnull); alpha_ = slice_sampler1d(ar, alpha_, *rng, 0.00000001, std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations); } std::cerr << "QuasiModel2(alpha=" << alpha_ << ",p_null=" << pnull_.as_float() << ") = " << Likelihood() << std::endl; zcache_.clear(); } prob_t Likelihood() const { return Likelihood(alpha_, pnull_.as_float()); } prob_t Likelihood(double alpha, double ppnull) const { const prob_t pnull(ppnull); const prob_t pnotnull(1 - ppnull); prob_t p; p.logeq(Md::log_gamma_density(alpha, 0.1, 25)); // TODO configure assert(!p.is_0()); prob_t prob_of_ppnull; prob_of_ppnull.logeq(Md::log_beta_density(ppnull, 2, 10)); assert(!prob_of_ppnull.is_0()); p *= prob_of_ppnull; for (ObsCount::const_iterator it = obs_.begin(); it != obs_.end(); ++it) { const AlignmentObservation& ao = it->first; if (ao.a_j) { prob_t u = XUnnormalizedProb(ao.a_j, ao.j, ao.src_len, ao.trg_len, alpha); prob_t z = XComputeZ(ao.j, ao.src_len, ao.trg_len, alpha); prob_t pa(u / z); pa *= pnotnull; pa.poweq(it->second); p *= pa; } else { p *= pnull.pow(it->second); } } return p; } private: static prob_t XUnnormalizedProb(unsigned a_j, unsigned j, unsigned src_len, unsigned trg_len, double alpha) { prob_t p; p.logeq(-fabs(double(a_j - 1) / src_len - double(j) / trg_len) * alpha); return p; } static prob_t XComputeZ(unsigned j, unsigned src_len, unsigned trg_len, double alpha) { prob_t z = prob_t::Zero(); for (int a_j = 1; a_j <= src_len; ++a_j) z += XUnnormalizedProb(a_j, j, src_len, trg_len, alpha); return z; } static double UnnormalizedProb(unsigned a_j, unsigned j, unsigned src_len, unsigned trg_len, double alpha) { return exp(-fabs(double(a_j - 1) / src_len - double(j) / trg_len) * alpha); } static double ComputeZ(unsigned j, unsigned src_len, unsigned trg_len, double alpha) { double z = 0; for (int a_j = 1; a_j <= src_len; ++a_j) z += UnnormalizedProb(a_j, j, src_len, trg_len, alpha); return z; } const double& GetOrComputeZ(unsigned j, unsigned src_len, unsigned trg_len) const { if (src_len >= zcache_.size()) zcache_.resize(src_len + 1); if (trg_len >= zcache_[src_len].size()) zcache_[src_len].resize(trg_len + 1); std::vector<double>& zv = zcache_[src_len][trg_len]; if (zv.size() == 0) zv.resize(trg_len); double& z = zv[j]; if (!z) z = ComputeZ(j, src_len, trg_len, alpha_); return z; } double alpha_; prob_t pnull_; prob_t pnotnull_; mutable std::vector<std::vector<std::vector<double> > > zcache_; typedef std::tr1::unordered_map<AlignmentObservation, int, boost::hash<AlignmentObservation> > ObsCount; ObsCount obs_; }; #endif