#ifndef _PYP_WORD_MODEL_H_ #define _PYP_WORD_MODEL_H_ #include <iostream> #include <cmath> #include <vector> #include "prob.h" #include "ccrp.h" #include "m.h" #include "tdict.h" #include "os_phrase.h" // PYP(d,s,poisson-uniform) represented as a CRP template <class Base> struct PYPWordModel { explicit PYPWordModel(Base* b) : base(*b), r(1,1,1,1,0.66,50.0) {} void ResampleHyperparameters(MT19937* rng) { r.resample_hyperparameters(rng); std::cerr << " PYPWordModel(d=" << r.discount() << ",s=" << r.strength() << ")\n"; } inline prob_t operator()(const std::vector<WordID>& s) const { return r.prob(s, base(s)); } inline void Increment(const std::vector<WordID>& s, MT19937* rng) { if (r.increment(s, base(s), rng)) base.Increment(s, rng); } inline void Decrement(const std::vector<WordID>& s, MT19937 *rng) { if (r.decrement(s, rng)) base.Decrement(s, rng); } inline prob_t Likelihood() const { prob_t p; p.logeq(r.log_crp_prob()); p *= base.Likelihood(); return p; } void Summary() const { std::cerr << "PYPWordModel: generations=" << r.num_customers() << " PYP(d=" << r.discount() << ",s=" << r.strength() << ')' << std::endl; for (typename CCRP<std::vector<WordID> >::const_iterator it = r.begin(); it != r.end(); ++it) { std::cerr << " " << it->second.total_dish_count_ << " (on " << it->second.table_counts_.size() << " tables) " << TD::GetString(it->first) << std::endl; } } private: Base& base; // keeps track of the draws from the base distribution CCRP<std::vector<WordID> > r; }; #endif