#ifndef _MONOTONIC_PSEG_H_ #define _MONOTONIC_PSEG_H_ #include <vector> #include "prob.h" #include "ccrp_nt.h" #include "trule.h" #include "base_distributions.h" template <typename BaseMeasure> struct MonotonicParallelSegementationModel { explicit MonotonicParallelSegementationModel(BaseMeasure& rcp0) : rp0(rcp0), base(prob_t::One()), rules(1,1), stop(1.0) {} void DecrementRule(const TRule& rule) { if (rules.decrement(rule)) base /= rp0(rule); } void IncrementRule(const TRule& rule) { if (rules.increment(rule)) base *= rp0(rule); } void IncrementRulesAndStops(const std::vector<TRulePtr>& rules) { for (int i = 0; i < rules.size(); ++i) IncrementRule(*rules[i]); if (rules.size()) IncrementContinue(rules.size() - 1); IncrementStop(); } void DecrementRulesAndStops(const std::vector<TRulePtr>& rules) { for (int i = 0; i < rules.size(); ++i) DecrementRule(*rules[i]); if (rules.size()) { DecrementContinue(rules.size() - 1); DecrementStop(); } } prob_t RuleProbability(const TRule& rule) const { prob_t p; p.logeq(rules.logprob(rule, log(rp0(rule)))); return p; } prob_t Likelihood() const { prob_t p = base; prob_t q; q.logeq(rules.log_crp_prob()); p *= q; q.logeq(stop.log_crp_prob()); p *= q; return p; } void IncrementStop() { stop.increment(true); } void IncrementContinue(int n = 1) { for (int i = 0; i < n; ++i) stop.increment(false); } void DecrementStop() { stop.decrement(true); } void DecrementContinue(int n = 1) { for (int i = 0; i < n; ++i) stop.decrement(false); } prob_t StopProbability() const { return prob_t(stop.prob(true, 0.5)); } prob_t ContinueProbability() const { return prob_t(stop.prob(false, 0.5)); } const BaseMeasure& rp0; prob_t base; CCRP_NoTable<TRule> rules; CCRP_NoTable<bool> stop; }; #endif