#include <iostream> #include <tr1/memory> #include <queue> #include <boost/functional.hpp> #include <boost/program_options.hpp> #include <boost/program_options/variables_map.hpp> #include "viterbi.h" #include "hg.h" #include "trule.h" #include "tdict.h" #include "filelib.h" #include "dict.h" #include "sampler.h" #include "ccrp_nt.h" #include "ccrp_onetable.h" using namespace std; using namespace tr1; namespace po = boost::program_options; ostream& operator<<(ostream& os, const vector<WordID>& p) { os << '['; for (int i = 0; i < p.size(); ++i) os << (i==0 ? "" : " ") << TD::Convert(p[i]); return os << ']'; } struct UnigramModel { explicit UnigramModel(const string& fname, unsigned vocab_size, double p0null = 0.05) : use_uniform_(fname.size() == 0), p0null_(p0null), uniform_((1.0 - p0null) / vocab_size), probs_(TD::NumWords() + 1) { if (fname.size() > 0) LoadUnigrams(fname); probs_[0] = p0null_; } // // \data\ // ngram 1=9295 // // \1-grams: // -3.191193 " void LoadUnigrams(const string& fname) { cerr << "Loading unigram probabilities from " << fname << " ..." << endl; ReadFile rf(fname); string line; istream& in = *rf.stream(); assert(in); getline(in, line); assert(line.empty()); getline(in, line); assert(line == "\\data\\"); getline(in, line); size_t pos = line.find("ngram 1="); assert(pos == 0); assert(line.size() > 8); const size_t num_unigrams = atoi(&line[8]); getline(in, line); assert(line.empty()); getline(in, line); assert(line == "\\1-grams:"); for (size_t i = 0; i < num_unigrams; ++i) { getline(in, line); assert(line.size() > 0); pos = line.find('\t'); assert(pos > 0); assert(pos + 1 < line.size()); const WordID w = TD::Convert(line.substr(pos + 1)); line[pos] = 0; float p = atof(&line[0]); const prob_t pnon_null(1.0 - p0null_.as_float()); if (w < probs_.size()) probs_[w].logeq(p * log(10) + log(pnon_null)); else abort(); } } const prob_t& operator()(const WordID& w) const { if (!w) return p0null_; if (use_uniform_) return uniform_; return probs_[w]; } const bool use_uniform_; const prob_t p0null_; const prob_t uniform_; vector<prob_t> probs_; }; struct Model1 { explicit Model1(const string& fname) : kNULL(TD::Convert("<eps>")), kZERO() { LoadModel1(fname); } void LoadModel1(const string& fname) { cerr << "Loading Model 1 parameters from " << fname << " ..." << endl; ReadFile rf(fname); istream& in = *rf.stream(); string line; unsigned lc = 0; while(getline(in, line)) { ++lc; int cur = 0; int start = 0; while(cur < line.size() && line[cur] != ' ') { ++cur; } assert(cur != line.size()); line[cur] = 0; const WordID src = TD::Convert(&line[0]); ++cur; start = cur; while(cur < line.size() && line[cur] != ' ') { ++cur; } assert(cur != line.size()); line[cur] = 0; WordID trg = TD::Convert(&line[start]); const double logprob = strtod(&line[cur + 1], NULL); if (src >= ttable.size()) ttable.resize(src + 1); ttable[src][trg].logeq(logprob); } cerr << " read " << lc << " parameters.\n"; } // returns prob 0 if src or trg is not found! const prob_t& operator()(WordID src, WordID trg) const { if (src == 0) src = kNULL; if (src < ttable.size()) { const map<WordID, prob_t>& cpd = ttable[src]; const map<WordID, prob_t>::const_iterator it = cpd.find(trg); if (it != cpd.end()) return it->second; } return kZERO; } const WordID kNULL; const prob_t kZERO; vector<map<WordID, prob_t> > ttable; }; void InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples") ("particles,p",po::value<unsigned>()->default_value(25),"Number of particles") ("input,i",po::value<string>(),"Read parallel data from") ("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)") ("inverse_model1,M",po::value<string>(),"Inverse Model 1 parameters (used in backward estimate)") ("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution") ("src_unigram,u",po::value<string>()->default_value(""),"Source unigram distribution; empty for uniform") ("trg_unigram,U",po::value<string>()->default_value(""),"Target unigram distribution; empty for uniform") ("random_seed,S",po::value<uint32_t>(), "Random seed"); po::options_description clo("Command line options"); clo.add_options() ("config", po::value<string>(), "Configuration file") ("help,h", "Print this help message and exit"); po::options_description dconfig_options, dcmdline_options; dconfig_options.add(opts); dcmdline_options.add(opts).add(clo); po::store(parse_command_line(argc, argv, dcmdline_options), *conf); if (conf->count("config")) { ifstream config((*conf)["config"].as<string>().c_str()); po::store(po::parse_config_file(config, dconfig_options), *conf); } po::notify(*conf); if (conf->count("help") || (conf->count("input") == 0)) { cerr << dcmdline_options << endl; exit(1); } } void ReadParallelCorpus(const string& filename, vector<vector<WordID> >* f, vector<vector<WordID> >* e, set<WordID>* vocab_f, set<WordID>* vocab_e) { f->clear(); e->clear(); vocab_f->clear(); vocab_e->clear(); istream* in; if (filename == "-") in = &cin; else in = new ifstream(filename.c_str()); assert(*in); string line; const WordID kDIV = TD::Convert("|||"); vector<WordID> tmp; while(*in) { getline(*in, line); if (line.empty() && !*in) break; e->push_back(vector<int>()); f->push_back(vector<int>()); vector<int>& le = e->back(); vector<int>& lf = f->back(); tmp.clear(); TD::ConvertSentence(line, &tmp); bool isf = true; for (unsigned i = 0; i < tmp.size(); ++i) { const int cur = tmp[i]; if (isf) { if (kDIV == cur) { isf = false; } else { lf.push_back(cur); vocab_f->insert(cur); } } else { assert(cur != kDIV); le.push_back(cur); vocab_e->insert(cur); } } assert(isf == false); } if (in != &cin) delete in; } int main(int argc, char** argv) { po::variables_map conf; InitCommandLine(argc, argv, &conf); const unsigned particles = conf["particles"].as<unsigned>(); const unsigned samples = conf["samples"].as<unsigned>(); TD::Convert("<s>"); TD::Convert("</s>"); TD::Convert("<unk>"); if (!conf.count("model1")) { cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n"; return 1; } shared_ptr<MT19937> prng; if (conf.count("random_seed")) prng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); else prng.reset(new MT19937); MT19937& rng = *prng; vector<vector<WordID> > corpuse, corpusf; set<WordID> vocabe, vocabf; cerr << "Reading corpus...\n"; ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe); cerr << "F-corpus size: " << corpusf.size() << " sentences\t (" << vocabf.size() << " word types)\n"; cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n"; assert(corpusf.size() == corpuse.size()); UnigramModel src_unigram(conf["src_unigram"].as<string>(), vocabf.size()); UnigramModel trg_unigram(conf["trg_unigram"].as<string>(), vocabe.size()); const prob_t kHALF(0.5); const string kEMPTY = "NULL"; const int kLHS = -TD::Convert("X"); Model1 m1(conf["model1"].as<string>()); Model1 invm1(conf["inverse_model1"].as<string>()); for (int si = 0; si < conf["samples"].as<unsigned>(); ++si) { cerr << '.' << flush; for (int ci = 0; ci < corpusf.size(); ++ci) { const vector<WordID>& trg = corpuse[ci]; const vector<WordID>& src = corpusf[ci]; for (int i = 0; i <= trg.size(); ++i) { const WordID e_i = i > 0 ? trg[i-1] : 0; for (int j = 0; j <= src.size(); ++j) { const WordID f_j = j > 0 ? src[j-1] : 0; if (e_i == 0 && f_j == 0) continue; prob_t je = kHALF * src_unigram(f_j) * m1(f_j,e_i) + kHALF * trg_unigram(e_i) * invm1(e_i,f_j); cerr << "p( " << (e_i ? TD::Convert(e_i) : kEMPTY) << " , " << (f_j ? TD::Convert(f_j) : kEMPTY) << " ) = " << log(je) << endl; if (e_i && f_j) cout << "[X] ||| " << TD::Convert(f_j) << " ||| " << TD::Convert(e_i) << " ||| LogProb=" << log(je) << endl; } } } } }