//! slice-sampler.h is an MCMC slice sampler //! //! Mark Johnson, 1st August 2008 #ifndef SLICE_SAMPLER_H #define SLICE_SAMPLER_H #include <algorithm> #include <cassert> #include <cmath> #include <iostream> #include <limits> //! slice_sampler_rfc_type{} returns the value of a user-specified //! function if the argument is within range, or - infinity otherwise // template <typename F, typename Fn, typename U> struct slice_sampler_rfc_type { F min_x, max_x; const Fn& f; U max_nfeval, nfeval; slice_sampler_rfc_type(F min_x, F max_x, const Fn& f, U max_nfeval) : min_x(min_x), max_x(max_x), f(f), max_nfeval(max_nfeval), nfeval(0) { } F operator() (F x) { if (min_x < x && x < max_x) { assert(++nfeval <= max_nfeval); F fx = f(x); assert(std::isfinite(fx)); return fx; } return -std::numeric_limits<F>::infinity(); } }; // slice_sampler_rfc_type{} //! slice_sampler1d() implements the univariate "range doubling" slice sampler //! described in Neal (2003) "Slice Sampling", The Annals of Statistics 31(3), 705-767. // template <typename F, typename LogF, typename Uniform01> F slice_sampler1d(const LogF& logF0, //!< log of function to sample F x, //!< starting point Uniform01& u01, //!< uniform [0,1) random number generator F min_x = -std::numeric_limits<F>::infinity(), //!< minimum value of support F max_x = std::numeric_limits<F>::infinity(), //!< maximum value of support F w = 0.0, //!< guess at initial width unsigned nsamples=1, //!< number of samples to draw unsigned max_nfeval=200) //!< max number of function evaluations { typedef unsigned U; slice_sampler_rfc_type<F,LogF,U> logF(min_x, max_x, logF0, max_nfeval); assert(std::isfinite(x)); if (w <= 0.0) { // set w to a default width if (min_x > -std::numeric_limits<F>::infinity() && max_x < std::numeric_limits<F>::infinity()) w = (max_x - min_x)/4; else w = std::max(((x < 0.0) ? -x : x)/4, (F) 0.1); } assert(std::isfinite(w)); F logFx = logF(x); for (U sample = 0; sample < nsamples; ++sample) { F logY = logFx + log(u01()+1e-100); //! slice logFx at this value assert(std::isfinite(logY)); F xl = x - w*u01(); //! lower bound on slice interval F logFxl = logF(xl); F xr = xl + w; //! upper bound on slice interval F logFxr = logF(xr); while (logY < logFxl || logY < logFxr) // doubling procedure if (u01() < 0.5) logFxl = logF(xl -= xr - xl); else logFxr = logF(xr += xr - xl); F xl1 = xl; F xr1 = xr; while (true) { // shrinking procedure F x1 = xl1 + u01()*(xr1 - xl1); if (logY < logF(x1)) { F xl2 = xl; // acceptance procedure F xr2 = xr; bool d = false; while (xr2 - xl2 > 1.1*w) { F xm = (xl2 + xr2)/2; if ((x < xm && x1 >= xm) || (x >= xm && x1 < xm)) d = true; if (x1 < xm) xr2 = xm; else xl2 = xm; if (d && logY >= logF(xl2) && logY >= logF(xr2)) goto unacceptable; } x = x1; goto acceptable; } goto acceptable; unacceptable: if (x1 < x) // rest of shrinking procedure xl1 = x1; else xr1 = x1; } acceptable: w = (4*w + (xr1 - xl1))/5; // update width estimate } return x; } /* //! slice_sampler1d() implements a 1-d MCMC slice sampler. //! It should be correct for unimodal distributions, but //! not for multimodal ones. // template <typename F, typename LogP, typename Uniform01> F slice_sampler1d(const LogP& logP, //!< log of distribution to sample F x, //!< initial sample Uniform01& u01, //!< uniform random number generator F min_x = -std::numeric_limits<F>::infinity(), //!< minimum value of support F max_x = std::numeric_limits<F>::infinity(), //!< maximum value of support F w = 0.0, //!< guess at initial width unsigned nsamples=1, //!< number of samples to draw unsigned max_nfeval=200) //!< max number of function evaluations { typedef unsigned U; assert(std::isfinite(x)); if (w <= 0.0) { if (min_x > -std::numeric_limits<F>::infinity() && max_x < std::numeric_limits<F>::infinity()) w = (max_x - min_x)/4; else w = std::max(((x < 0.0) ? -x : x)/4, 0.1); } // TRACE4(x, min_x, max_x, w); F logPx = logP(x); assert(std::isfinite(logPx)); U nfeval = 1; for (U sample = 0; sample < nsamples; ++sample) { F x0 = x; F logU = logPx + log(u01()+1e-100); assert(std::isfinite(logU)); F r = u01(); F xl = std::max(min_x, x - r*w); F xr = std::min(max_x, x + (1-r)*w); // TRACE3(x, logPx, logU); while (xl > min_x && logP(xl) > logU) { xl -= w; w *= 2; ++nfeval; if (nfeval >= max_nfeval) std::cerr << "## Error: nfeval = " << nfeval << ", max_nfeval = " << max_nfeval << ", sample = " << sample << ", nsamples = " << nsamples << ", r = " << r << ", w = " << w << ", xl = " << xl << std::endl; assert(nfeval < max_nfeval); } xl = std::max(xl, min_x); while (xr < max_x && logP(xr) > logU) { xr += w; w *= 2; ++nfeval; if (nfeval >= max_nfeval) std::cerr << "## Error: nfeval = " << nfeval << ", max_nfeval = " << max_nfeval << ", sample = " << sample << ", nsamples = " << nsamples << ", r = " << r << ", w = " << w << ", xr = " << xr << std::endl; assert(nfeval < max_nfeval); } xr = std::min(xr, max_x); while (true) { r = u01(); x = r*xl + (1-r)*xr; assert(std::isfinite(x)); logPx = logP(x); // TRACE4(logPx, x, xl, xr); assert(std::isfinite(logPx)); ++nfeval; if (nfeval >= max_nfeval) std::cerr << "## Error: nfeval = " << nfeval << ", max_nfeval = " << max_nfeval << ", sample = " << sample << ", nsamples = " << nsamples << ", r = " << r << ", w = " << w << ", xl = " << xl << ", xr = " << xr << ", x = " << x << std::endl; assert(nfeval < max_nfeval); if (logPx > logU) break; else if (x > x0) xr = x; else xl = x; } // w = (4*w + (xr-xl))/5; // gradually adjust w } // TRACE2(logPx, x); return x; } // slice_sampler1d() */ #endif // SLICE_SAMPLER_H