#include "precomputation.h" #include #include #include "data_array.h" #include "suffix_array.h" using namespace std; using namespace tr1; int Precomputation::NON_TERMINAL = -1; Precomputation::Precomputation( shared_ptr suffix_array, int num_frequent_patterns, int num_super_frequent_patterns, int max_rule_span, int max_rule_symbols, int min_gap_size, int max_frequent_phrase_len, int min_frequency) { vector data = suffix_array->GetData()->GetData(); vector > frequent_patterns = FindMostFrequentPatterns( suffix_array, data, num_frequent_patterns, max_frequent_phrase_len, min_frequency); unordered_set, VectorHash> frequent_patterns_set; unordered_set, VectorHash> super_frequent_patterns_set; for (size_t i = 0; i < frequent_patterns.size(); ++i) { frequent_patterns_set.insert(frequent_patterns[i]); if (i < num_super_frequent_patterns) { super_frequent_patterns_set.insert(frequent_patterns[i]); } } vector > matchings; for (size_t i = 0; i < data.size(); ++i) { if (data[i] == DataArray::END_OF_LINE) { AddCollocations(matchings, data, max_rule_span, min_gap_size, max_rule_symbols); matchings.clear(); continue; } vector pattern; for (int j = 1; j <= max_frequent_phrase_len && i + j <= data.size(); ++j) { pattern.push_back(data[i + j - 1]); if (frequent_patterns_set.count(pattern)) { inverted_index[pattern].push_back(i); int is_super_frequent = super_frequent_patterns_set.count(pattern); matchings.push_back(make_tuple(i, j, is_super_frequent)); } else { // If the current pattern is not frequent, any longer pattern having the // current pattern as prefix will not be frequent. break; } } } } Precomputation::Precomputation() {} Precomputation::~Precomputation() {} vector > Precomputation::FindMostFrequentPatterns( shared_ptr suffix_array, const vector& data, int num_frequent_patterns, int max_frequent_phrase_len, int min_frequency) { vector lcp = suffix_array->BuildLCPArray(); vector run_start(max_frequent_phrase_len); priority_queue > > heap; for (size_t i = 1; i < lcp.size(); ++i) { for (int len = lcp[i]; len < max_frequent_phrase_len; ++len) { int frequency = i - run_start[len]; // TODO(pauldb): Only add patterns that don't span across multiple // sentences. if (frequency >= min_frequency) { heap.push(make_pair(frequency, make_pair(suffix_array->GetSuffix(run_start[len]), len + 1))); } run_start[len] = i; } } vector > frequent_patterns; for (size_t i = 0; i < num_frequent_patterns && !heap.empty(); ++i) { int start = heap.top().second.first; int len = heap.top().second.second; heap.pop(); vector pattern(data.begin() + start, data.begin() + start + len); frequent_patterns.push_back(pattern); } return frequent_patterns; } void Precomputation::AddCollocations( const vector >& matchings, const vector& data, int max_rule_span, int min_gap_size, int max_rule_symbols) { for (size_t i = 0; i < matchings.size(); ++i) { int start1, size1, is_super1; tie(start1, size1, is_super1) = matchings[i]; for (size_t j = i + 1; j < matchings.size(); ++j) { int start2, size2, is_super2; tie(start2, size2, is_super2) = matchings[j]; if (start2 - start1 >= max_rule_span) { break; } if (start2 - start1 - size1 >= min_gap_size && start2 + size2 - start1 <= max_rule_span && size1 + size2 + 1 <= max_rule_symbols) { vector pattern(data.begin() + start1, data.begin() + start1 + size1); pattern.push_back(Precomputation::NON_TERMINAL); pattern.insert(pattern.end(), data.begin() + start2, data.begin() + start2 + size2); AddStartPositions(collocations[pattern], start1, start2); if (is_super2) { pattern.push_back(Precomputation::NON_TERMINAL); for (size_t k = j + 1; k < matchings.size(); ++k) { int start3, size3, is_super3; tie(start3, size3, is_super3) = matchings[k]; if (start3 - start1 >= max_rule_span) { break; } if (start3 - start2 - size2 >= min_gap_size && start3 + size3 - start1 <= max_rule_span && size1 + size2 + size3 + 2 <= max_rule_symbols && (is_super1 || is_super3)) { pattern.insert(pattern.end(), data.begin() + start3, data.begin() + start3 + size3); AddStartPositions(collocations[pattern], start1, start2, start3); pattern.erase(pattern.end() - size3); } } } } } } } void Precomputation::AddStartPositions( vector& positions, int pos1, int pos2) { positions.push_back(pos1); positions.push_back(pos2); } void Precomputation::AddStartPositions( vector& positions, int pos1, int pos2, int pos3) { positions.push_back(pos1); positions.push_back(pos2); positions.push_back(pos3); } void Precomputation::WriteBinary(const fs::path& filepath) const { FILE* file = fopen(filepath.string().c_str(), "w"); // TODO(pauldb): Refactor this code. int size = inverted_index.size(); fwrite(&size, sizeof(int), 1, file); for (auto entry: inverted_index) { size = entry.first.size(); fwrite(&size, sizeof(int), 1, file); fwrite(entry.first.data(), sizeof(int), size, file); size = entry.second.size(); fwrite(&size, sizeof(int), 1, file); fwrite(entry.second.data(), sizeof(int), size, file); } size = collocations.size(); fwrite(&size, sizeof(int), 1, file); for (auto entry: collocations) { size = entry.first.size(); fwrite(&size, sizeof(int), 1, file); fwrite(entry.first.data(), sizeof(int), size, file); size = entry.second.size(); fwrite(&size, sizeof(int), 1, file); fwrite(entry.second.data(), sizeof(int), size, file); } } const Index& Precomputation::GetInvertedIndex() const { return inverted_index; } const Index& Precomputation::GetCollocations() const { return collocations; }