/* * Score a grammar in striped format * ./score_grammar <alignment> < filtered.grammar > scored.grammar */ #include <iostream> #include <string> #include <map> #include <vector> #include <utility> #include <cstdlib> #include <fstream> #include <tr1/unordered_map> #include "sentence_pair.h" #include "extract.h" #include "fdict.h" #include "tdict.h" #include "lex_trans_tbl.h" #include "filelib.h" #include <boost/functional/hash.hpp> #include <boost/program_options.hpp> #include <boost/program_options/variables_map.hpp> using namespace std; using namespace std::tr1; static const size_t MAX_LINE_LENGTH = 64000000; typedef unordered_map<vector<WordID>, RuleStatistics, boost::hash<vector<WordID> > > ID2RuleStatistics; namespace { inline bool IsWhitespace(char c) { return c == ' ' || c == '\t'; } inline bool IsBracket(char c){return c == '[' || c == ']';} inline void SkipWhitespace(const char* buf, int* ptr) { while (buf[*ptr] && IsWhitespace(buf[*ptr])) { ++(*ptr); } } } int ReadPhraseUntilDividerOrEnd(const char* buf, const int sstart, const int end, vector<WordID>* p) { static const WordID kDIV = TD::Convert("|||"); int ptr = sstart; while(ptr < end) { while(ptr < end && IsWhitespace(buf[ptr])) { ++ptr; } int start = ptr; while(ptr < end && !IsWhitespace(buf[ptr])) { ++ptr; } if (ptr == start) {cerr << "Warning! empty token.\n"; return ptr; } const WordID w = TD::Convert(string(buf, start, ptr - start)); if((IsBracket(buf[start]) and IsBracket(buf[ptr-1])) or( w == kDIV)) p->push_back(1 * w); else { if (w == kDIV) return ptr; p->push_back(w); } } return ptr; } void ParseLine(const char* buf, vector<WordID>* cur_key, ID2RuleStatistics* counts) { static const WordID kDIV = TD::Convert("|||"); counts->clear(); int ptr = 0; while(buf[ptr] != 0 && buf[ptr] != '\t') { ++ptr; } if (buf[ptr] != '\t') { cerr << "Missing tab separator between key and value!\n INPUT=" << buf << endl; exit(1); } cur_key->clear(); // key is: "[X] ||| word word word" int tmpp = ReadPhraseUntilDividerOrEnd(buf, 0, ptr, cur_key); cur_key->push_back(kDIV); ReadPhraseUntilDividerOrEnd(buf, tmpp, ptr, cur_key); ++ptr; int start = ptr; int end = ptr; int state = 0; // 0=reading label, 1=reading count vector<WordID> name; while(buf[ptr] != 0) { while(buf[ptr] != 0 && buf[ptr] != '|') { ++ptr; } if (buf[ptr] == '|') { ++ptr; if (buf[ptr] == '|') { ++ptr; if (buf[ptr] == '|') { ++ptr; end = ptr - 3; while (end > start && IsWhitespace(buf[end-1])) { --end; } if (start == end) { cerr << "Got empty token!\n LINE=" << buf << endl; exit(1); } switch (state) { case 0: ++state; name.clear(); ReadPhraseUntilDividerOrEnd(buf, start, end, &name); break; case 1: --state; (*counts)[name].ParseRuleStatistics(buf, start, end); break; default: cerr << "Can't happen\n"; abort(); } SkipWhitespace(buf, &ptr); start = ptr; } } } } end=ptr; while (end > start && IsWhitespace(buf[end-1])) { --end; } if (end > start) { switch (state) { case 0: ++state; name.clear(); ReadPhraseUntilDividerOrEnd(buf, start, end, &name); break; case 1: --state; (*counts)[name].ParseRuleStatistics(buf, start, end); break; default: cerr << "Can't happen\n"; abort(); } } } void LexTranslationTable::createTTable(const char* buf){ bool DEBUG = false; AnnotatedParallelSentence sent; sent.ParseInputLine(buf); //iterate over the alignment to compute aligned words for(int i =0;i<sent.aligned.width();i++) { for (int j=0;j<sent.aligned.height();j++) { if (DEBUG) cerr << sent.aligned(i,j) << " "; if( sent.aligned(i,j)) { if (DEBUG) cerr << TD::Convert(sent.f[i]) << " aligned to " << TD::Convert(sent.e[j]); ++word_translation[pair<WordID,WordID> (sent.f[i], sent.e[j])]; ++total_foreign[sent.f[i]]; ++total_english[sent.e[j]]; } } if (DEBUG) cerr << endl; } if (DEBUG) cerr << endl; static const WordID NULL_ = TD::Convert("NULL"); //handle unaligned words - align them to null for (int j =0; j < sent.e_len; j++) { if (sent.e_aligned[j]) continue; ++word_translation[pair<WordID,WordID> (NULL_, sent.e[j])]; ++total_foreign[NULL_]; ++total_english[sent.e[j]]; } for (int i =0; i < sent.f_len; i++) { if (sent.f_aligned[i]) continue; ++word_translation[pair<WordID,WordID> (sent.f[i], NULL_)]; ++total_english[NULL_]; ++total_foreign[sent.f[i]]; } } inline float safenlog(float v) { if (v == 1.0f) return 0.0f; float res = -log(v); if (res > 100.0f) res = 100.0f; return res; } int main(int argc, char** argv){ bool DEBUG= false; if (argc != 2) { cerr << "Usage: " << argv[0] << " corpus.al < filtered.grammar\n"; return 1; } ifstream alignment (argv[1]); istream& unscored_grammar = cin; ostream& scored_grammar = cout; //create lexical translation table cerr << "Creating table..." << endl; char* buf = new char[MAX_LINE_LENGTH]; LexTranslationTable table; while(!alignment.eof()) { alignment.getline(buf, MAX_LINE_LENGTH); if (buf[0] == 0) continue; table.createTTable(buf); } bool PRINT_TABLE=false; if (PRINT_TABLE) { ofstream trans_table; trans_table.open("lex_trans_table.out"); for(map < pair<WordID,WordID>,int >::iterator it = table.word_translation.begin(); it != table.word_translation.end(); ++it) { trans_table << TD::Convert(it->first.first) << "|||" << TD::Convert(it->first.second) << "==" << it->second << "//" << table.total_foreign[it->first.first] << "//" << table.total_english[it->first.second] << endl; } trans_table.close(); } //score unscored grammar cerr <<"Scoring grammar..." << endl; ID2RuleStatistics acc, cur_counts; vector<WordID> key, cur_key,temp_key; vector< pair<short,short> > al; vector< pair<short,short> >::iterator ita; int line = 0; static const int kCF = FD::Convert("CF"); static const int kCE = FD::Convert("CE"); static const int kCFE = FD::Convert("CFE"); while(!unscored_grammar.eof()) { ++line; unscored_grammar.getline(buf, MAX_LINE_LENGTH); if (buf[0] == 0) continue; ParseLine(buf, &cur_key, &cur_counts); //loop over all the Target side phrases that this source aligns to for (ID2RuleStatistics::const_iterator it = cur_counts.begin(); it != cur_counts.end(); ++it) { /*Compute phrase translation prob. Print out scores in this format: Phrase trnaslation prob P(F|E) Phrase translation prob P(E|F) Lexical weighting prob lex(F|E) Lexical weighting prob lex(E|F) */ float pEF_ = it->second.counts.value(kCFE) / it->second.counts.value(kCF); float pFE_ = it->second.counts.value(kCFE) / it->second.counts.value(kCE); map <WordID, pair<int, float> > foreign_aligned; map <WordID, pair<int, float> > english_aligned; //Loop over all the alignment points to compute lexical translation probability al = it->second.aligns; for(ita = al.begin(); ita != al.end(); ++ita) { if (DEBUG) { cerr << "\nA:" << ita->first << "," << ita->second << "::"; cerr << TD::Convert(cur_key[ita->first + 2]) << "-" << TD::Convert(it->first[ita->second]); } //Lookup this alignment probability in the table int temp = table.word_translation[pair<WordID,WordID> (cur_key[ita->first+2],it->first[ita->second])]; float f2e=0, e2f=0; if ( table.total_foreign[cur_key[ita->first+2]] != 0) f2e = (float) temp / table.total_foreign[cur_key[ita->first+2]]; if ( table.total_english[it->first[ita->second]] !=0 ) e2f = (float) temp / table.total_english[it->first[ita->second]]; if (DEBUG) printf (" %d %E %E\n", temp, f2e, e2f); //local counts to keep track of which things haven't been aligned, to later compute their null alignment if (foreign_aligned.count(cur_key[ita->first+2])) { foreign_aligned[ cur_key[ita->first+2] ].first++; foreign_aligned[ cur_key[ita->first+2] ].second += e2f; } else foreign_aligned [ cur_key[ita->first+2] ] = pair<int,float> (1,e2f); if (english_aligned.count( it->first[ ita->second] )) { english_aligned[ it->first[ ita->second ]].first++; english_aligned[ it->first[ ita->second] ].second += f2e; } else english_aligned [ it->first[ ita->second] ] = pair<int,float> (1,f2e); } float final_lex_f2e=1, final_lex_e2f=1; static const WordID NULL_ = TD::Convert("NULL"); //compute lexical weight P(F|E) and include unaligned foreign words for(int i=0;i<cur_key.size(); i++) { if (!table.total_foreign.count(cur_key[i])) continue; //if we dont have it in the translation table, we won't know its lexical weight if (foreign_aligned.count(cur_key[i])) { pair<int, float> temp_lex_prob = foreign_aligned[cur_key[i]]; final_lex_e2f *= temp_lex_prob.second / temp_lex_prob.first; } else //dealing with null alignment { int temp_count = table.word_translation[pair<WordID,WordID> (cur_key[i],NULL_)]; float temp_e2f = (float) temp_count / table.total_english[NULL_]; final_lex_e2f *= temp_e2f; } } //compute P(E|F) unaligned english words for(int j=0; j< it->first.size(); j++) { if (!table.total_english.count(it->first[j])) continue; if (english_aligned.count(it->first[j])) { pair<int, float> temp_lex_prob = english_aligned[it->first[j]]; final_lex_f2e *= temp_lex_prob.second / temp_lex_prob.first; } else //dealing with null { int temp_count = table.word_translation[pair<WordID,WordID> (NULL_,it->first[j])]; float temp_f2e = (float) temp_count / table.total_foreign[NULL_]; final_lex_f2e *= temp_f2e; } } scored_grammar << TD::GetString(cur_key); string lhs = TD::Convert(cur_key[0]); scored_grammar << " " << TD::GetString(it->first) << " |||"; if(lhs.find('_')!=string::npos) { scored_grammar << " Bkoff=" << safenlog(3.0f); } else { scored_grammar << " FGivenE=" << safenlog(pFE_) << " EGivenF=" << safenlog(pEF_); scored_grammar << " LexE2F=" << safenlog(final_lex_e2f) << " LexF2E=" << safenlog(final_lex_f2e); } scored_grammar << endl; } } }