#include <iostream> #include <vector> #include <utility> #include <tr1/unordered_map> #include <boost/functional/hash.hpp> #include <boost/program_options.hpp> #include <boost/program_options/variables_map.hpp> #include <boost/lexical_cast.hpp> #include "sparse_vector.h" #include "sentence_pair.h" #include "extract.h" #include "tdict.h" #include "fdict.h" #include "wordid.h" #include "array2d.h" #include "filelib.h" #include "striped_grammar.h" using namespace std; using namespace std::tr1; namespace po = boost::program_options; static const size_t MAX_LINE_LENGTH = 100000; WordID kBOS, kEOS, kDIVIDER, kGAP, kSPLIT; int kCOUNT; void InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() ("input,i", po::value<string>()->default_value("-"), "Input file") ("default_category,d", po::value<string>(), "Default span type (use X for 'Hiero')") ("x_cdyer_pos,x", "Extract monolingual POS contexts (cdyer experimental)") ("loose", "Use loose phrase extraction heuristic for base phrases") ("base_phrase,B", "Write base phrases") ("base_phrase_spans", "Write base sentences and phrase spans") ("phrase_language", po::value<string>()->default_value("target"), "Extract phrase strings in source, target or both languages") ("context_language", po::value<string>()->default_value("target"), "Extract context strings in source, target or both languages") ("bidir,b", "Extract bidirectional rules (for computing p(f|e) in addition to p(e|f))") ("combiner_size,c", po::value<size_t>()->default_value(800000), "Number of unique items to store in cache before writing rule counts. Set to 1 to disable cache. Set to 0 for no limit.") ("silent", "Write nothing to stderr except errors") ("phrase_context,C", "Write base phrase contexts") ("phrase_context_size,S", po::value<int>()->default_value(2), "Use this many words of context on left and write when writing base phrase contexts") ("max_base_phrase_size,L", po::value<int>()->default_value(10), "Maximum starting phrase size") ("max_syms,l", po::value<int>()->default_value(5), "Maximum number of symbols in final phrase size") ("max_vars,v", po::value<int>()->default_value(2), "Maximum number of nonterminal variables in final phrase size") ("permit_adjacent_nonterminals,A", "Permit adjacent nonterminals in source side of rules") ("no_required_aligned_terminal,n", "Do not require an aligned terminal") ("topics,t", po::value<int>()->default_value(50), "Number of categories assigned during clustering") ("backoff,g","Produce a backoff grammar") ("help,h", "Print this help message and exit"); po::options_description clo("Command line options"); po::options_description dcmdline_options; dcmdline_options.add(opts); po::store(parse_command_line(argc, argv, dcmdline_options), *conf); po::notify(*conf); if (conf->count("help") || conf->count("input") == 0) { cerr << "\nUsage: extractor [-options]\n"; cerr << dcmdline_options << endl; exit(1); } } // TODO how to handle alignment information? void WriteBasePhrases(const AnnotatedParallelSentence& sentence, const vector<ParallelSpan>& phrases) { vector<WordID> e,f; for (int it = 0; it < phrases.size(); ++it) { const ParallelSpan& phrase = phrases[it]; e.clear(); f.clear(); for (int i = phrase.i1; i < phrase.i2; ++i) f.push_back(sentence.f[i]); for (int j = phrase.j1; j < phrase.j2; ++j) e.push_back(sentence.e[j]); cout << TD::GetString(f) << " ||| " << TD::GetString(e) << endl; } } void WriteBasePhraseSpans(const AnnotatedParallelSentence& sentence, const vector<ParallelSpan>& phrases) { cout << TD::GetString(sentence.f) << " ||| " << TD::GetString(sentence.e) << " |||"; for (int it = 0; it < phrases.size(); ++it) { const ParallelSpan& phrase = phrases[it]; cout << " " << phrase.i1 << "-" << phrase.i2 << "-" << phrase.j1 << "-" << phrase.j2; } cout << endl; } struct CountCombiner { CountCombiner(const size_t& csize) : combiner_size(csize) { if (csize == 0) { cerr << "Using unlimited combiner cache.\n"; } } ~CountCombiner() { if (!cache.empty()) WriteAndClearCache(); } void Count(const vector<WordID>& key, const vector<WordID>& val, const int count_type, const vector<pair<short,short> >& aligns) { if (combiner_size != 1) { RuleStatistics& v = cache[key][val]; float newcount = v.counts.add_value(count_type, 1.0f); // hack for adding alignments if (newcount < 7.0f && aligns.size() > v.aligns.size()) v.aligns = aligns; if (combiner_size > 1 && cache.size() > combiner_size) WriteAndClearCache(); } else { cout << TD::GetString(key) << '\t' << TD::GetString(val) << " ||| "; cout << RuleStatistics(count_type, 1.0f, aligns) << endl; } } private: void WriteAndClearCache() { for (unordered_map<vector<WordID>, Vec2PhraseCount, boost::hash<vector<WordID> > >::iterator it = cache.begin(); it != cache.end(); ++it) { cout << TD::GetString(it->first) << '\t'; const Vec2PhraseCount& vals = it->second; bool needdiv = false; for (Vec2PhraseCount::const_iterator vi = vals.begin(); vi != vals.end(); ++vi) { if (needdiv) cout << " ||| "; else needdiv = true; cout << TD::GetString(vi->first) << " ||| " << vi->second; } cout << endl; } cache.clear(); } const size_t combiner_size; typedef unordered_map<vector<WordID>, RuleStatistics, boost::hash<vector<WordID> > > Vec2PhraseCount; unordered_map<vector<WordID>, Vec2PhraseCount, boost::hash<vector<WordID> > > cache; }; // TODO optional source context // output <k, v> : k = phrase "document" v = context "term" void WritePhraseContexts(const AnnotatedParallelSentence& sentence, const vector<ParallelSpan>& phrases, const int ctx_size, bool phrase_s, bool phrase_t, bool context_s, bool context_t, CountCombiner* o) { vector<WordID> context, context_f; if (context_t) { context.resize(ctx_size * 2 + 1); context[ctx_size] = kGAP; } if (context_s) { context_f.resize(ctx_size * 2 + 1); context_f[ctx_size] = kGAP; } vector<WordID> key, key_f; if (phrase_t) key.reserve(100); if (phrase_s) key_f.reserve(100); for (int it = 0; it < phrases.size(); ++it) { const ParallelSpan& phrase = phrases[it]; key.clear(); for (int j = phrase.j1; j < phrase.j2 && phrase_t; ++j) key.push_back(sentence.e[j]); if (context_t) { context.resize(ctx_size * 2 + 1); for (int i = 0; i < ctx_size && context_t; ++i) { int epos = phrase.j1 - 1 - i; const WordID left_ctx = (epos < 0) ? kBOS : sentence.e[epos]; context[ctx_size - i - 1] = left_ctx; epos = phrase.j2 + i; const WordID right_ctx = (epos >= sentence.e_len) ? kEOS : sentence.e[epos]; context[ctx_size + i + 1] = right_ctx; } } else context.clear(); if (phrase_s) { key_f.clear(); for (int i = phrase.i1; i < phrase.i2; ++i) key_f.push_back(sentence.f[i]); if (phrase_t) key.push_back(kSPLIT); copy(key_f.begin(), key_f.end(), back_inserter(key)); } if (context_s) { for (int i = 0; i < ctx_size; ++i) { int fpos = phrase.i1 - 1 - i; const WordID left_ctx = (fpos < 0) ? kBOS : sentence.f[fpos]; context_f[ctx_size - i - 1] = left_ctx; fpos = phrase.i2 + i; const WordID right_ctx = (fpos >= sentence.f_len) ? kEOS : sentence.f[fpos]; context_f[ctx_size + i + 1] = right_ctx; } if (context_t) context.push_back(kSPLIT); copy(context_f.begin(), context_f.end(), back_inserter(context)); } o->Count(key, context, kCOUNT, vector<pair<short,short> >()); } } struct SimpleRuleWriter : public Extract::RuleObserver { protected: virtual void CountRuleImpl(WordID lhs, const vector<WordID>& rhs_f, const vector<WordID>& rhs_e, const vector<pair<short,short> >& fe_terminal_alignments) { cout << "[" << TD::Convert(-lhs) << "] |||"; for (int i = 0; i < rhs_f.size(); ++i) { if (rhs_f[i] < 0) cout << " [" << TD::Convert(-rhs_f[i]) << ']'; else cout << ' ' << TD::Convert(rhs_f[i]); } cout << " |||"; for (int i = 0; i < rhs_e.size(); ++i) { if (rhs_e[i] <= 0) cout << " [" << (1-rhs_e[i]) << ']'; else cout << ' ' << TD::Convert(rhs_e[i]); } cout << " |||"; for (int i = 0; i < fe_terminal_alignments.size(); ++i) { cout << ' ' << fe_terminal_alignments[i].first << '-' << fe_terminal_alignments[i].second; } cout << endl; } }; struct HadoopStreamingRuleObserver : public Extract::RuleObserver { HadoopStreamingRuleObserver(CountCombiner* cc, bool bidir_flag) : bidir(bidir_flag), kF(TD::Convert("F")), kE(TD::Convert("E")), kDIVIDER(TD::Convert("|||")), kLB("["), kRB("]"), combiner(*cc), kEMPTY(), kCFE(FD::Convert("CFE")) { for (int i=1; i < 50; ++i) index2sym[1-i] = TD::Convert(kLB + boost::lexical_cast<string>(i) + kRB); fmajor_key.resize(10, kF); emajor_key.resize(10, kE); if (bidir) fmajor_key[2] = emajor_key[2] = kDIVIDER; else fmajor_key[1] = kDIVIDER; } protected: virtual void CountRuleImpl(WordID lhs, const vector<WordID>& rhs_f, const vector<WordID>& rhs_e, const vector<pair<short,short> >& fe_terminal_alignments) { if (bidir) { // extract rules in "both directions" E->F and F->E fmajor_key.resize(3 + rhs_f.size()); emajor_key.resize(3 + rhs_e.size()); fmajor_val.resize(rhs_e.size()); emajor_val.resize(rhs_f.size()); emajor_key[1] = fmajor_key[1] = MapSym(lhs); int nt = 1; for (int i = 0; i < rhs_f.size(); ++i) { const WordID id = rhs_f[i]; if (id < 0) { fmajor_key[3 + i] = MapSym(id, nt); emajor_val[i] = MapSym(id, nt); ++nt; } else { fmajor_key[3 + i] = id; emajor_val[i] = id; } } for (int i = 0; i < rhs_e.size(); ++i) { WordID id = rhs_e[i]; if (id <= 0) { fmajor_val[i] = index2sym[id]; emajor_key[3 + i] = index2sym[id]; } else { fmajor_val[i] = id; emajor_key[3 + i] = id; } } combiner.Count(fmajor_key, fmajor_val, kCFE, fe_terminal_alignments); combiner.Count(emajor_key, emajor_val, kCFE, kEMPTY); } else { // extract rules only in F->E fmajor_key.resize(2 + rhs_f.size()); fmajor_val.resize(rhs_e.size()); fmajor_key[0] = MapSym(lhs); int nt = 1; for (int i = 0; i < rhs_f.size(); ++i) { const WordID id = rhs_f[i]; if (id < 0) fmajor_key[2 + i] = MapSym(id, nt++); else fmajor_key[2 + i] = id; } for (int i = 0; i < rhs_e.size(); ++i) { const WordID id = rhs_e[i]; if (id <= 0) fmajor_val[i] = index2sym[id]; else fmajor_val[i] = id; } combiner.Count(fmajor_key, fmajor_val, kCFE, fe_terminal_alignments); } } private: WordID MapSym(WordID sym, int ind = 0) { WordID& r = cat2ind2sym[sym][ind]; if (!r) { if (ind == 0) r = TD::Convert(kLB + TD::Convert(-sym) + kRB); else r = TD::Convert(kLB + TD::Convert(-sym) + "," + boost::lexical_cast<string>(ind) + kRB); } return r; } const bool bidir; const WordID kF, kE, kDIVIDER; const string kLB, kRB; CountCombiner& combiner; const vector<pair<short,short> > kEMPTY; const int kCFE; map<WordID, map<int, WordID> > cat2ind2sym; map<int, WordID> index2sym; vector<WordID> emajor_key, emajor_val, fmajor_key, fmajor_val; }; int main(int argc, char** argv) { po::variables_map conf; InitCommandLine(argc, argv, &conf); kBOS = TD::Convert("<s>"); kEOS = TD::Convert("</s>"); kDIVIDER = TD::Convert("|||"); kGAP = TD::Convert("<PHRASE>"); kCOUNT = FD::Convert("C"); kSPLIT = TD::Convert("<SPLIT>"); WordID default_cat = 0; // 0 means no default- extraction will // fail if a phrase is extracted without a // category const bool backoff = (conf.count("backoff") ? true : false); if (conf.count("default_category")) { string sdefault_cat = conf["default_category"].as<string>(); default_cat = -TD::Convert(sdefault_cat); cerr << "Default category: " << sdefault_cat << endl; } ReadFile rf(conf["input"].as<string>()); istream& in = *rf.stream(); char buf[MAX_LINE_LENGTH]; AnnotatedParallelSentence sentence; vector<ParallelSpan> phrases; vector<WordID> all_cats; int max_base_phrase_size = conf["max_base_phrase_size"].as<int>(); bool write_phrase_contexts = conf.count("phrase_context") > 0; const bool write_base_phrases = conf.count("base_phrase") > 0; const bool write_base_phrase_spans = conf.count("base_phrase_spans") > 0; const bool loose_phrases = conf.count("loose") > 0; const bool silent = conf.count("silent") > 0; const int max_syms = conf["max_syms"].as<int>(); const int max_vars = conf["max_vars"].as<int>(); const int ctx_size = conf["phrase_context_size"].as<int>(); const int num_categories = conf["topics"].as<int>(); const bool permit_adjacent_nonterminals = conf.count("permit_adjacent_nonterminals") > 0; const bool require_aligned_terminal = conf.count("no_required_aligned_terminal") == 0; const string ps = conf["phrase_language"].as<string>(); const bool phrase_s = ps == "source" || ps == "both"; const bool phrase_t = ps == "target" || ps == "both"; const string cs = conf["context_language"].as<string>(); const bool context_s = cs == "source" || cs == "both"; const bool context_t = cs == "target" || cs == "both"; const bool x_cdyer_pos = conf.count("x_cdyer_pos"); int line = 0; CountCombiner cc(conf["combiner_size"].as<size_t>()); HadoopStreamingRuleObserver o(&cc, conf.count("bidir") > 0); assert(phrase_s || phrase_t); assert(context_s || context_t); if(backoff) { for (int i=0;i < num_categories;++i) all_cats.push_back(TD::Convert("X"+boost::lexical_cast<string>(i))); } //SimpleRuleWriter o; while(in) { ++line; in.getline(buf, MAX_LINE_LENGTH); if (buf[0] == 0) continue; //cerr << "line #" << line << " = " << buf << endl; if (!silent) { if (line % 200 == 0) cerr << '.'; if (line % 8000 == 0) cerr << " [" << line << "]\n" << flush; } sentence.ParseInputLine(buf); if (x_cdyer_pos) { sentence.e = sentence.f; sentence.AllocateForAlignment(); for (int i = 0; i < sentence.e.size(); ++i) sentence.Align(i,i); max_base_phrase_size = 1; write_phrase_contexts = true; } phrases.clear(); Extract::ExtractBasePhrases(max_base_phrase_size, sentence, &phrases); if (loose_phrases) Extract::LoosenPhraseBounds(sentence, max_base_phrase_size, &phrases); if (phrases.empty()) { cerr << "WARNING no phrases extracted line: " << line << endl; continue; } if (write_phrase_contexts) { WritePhraseContexts(sentence, phrases, ctx_size, phrase_s, phrase_t, context_s, context_t, &cc); continue; } if (write_base_phrases) { WriteBasePhrases(sentence, phrases); continue; } if (write_base_phrase_spans) { WriteBasePhraseSpans(sentence, phrases); continue; } Extract::AnnotatePhrasesWithCategoryTypes(default_cat, sentence.span_types, &phrases); Extract::ExtractConsistentRules(sentence, phrases, max_vars, max_syms, permit_adjacent_nonterminals, require_aligned_terminal, &o, &all_cats); } if (!silent) cerr << endl; return 0; }