#include "extract.h" #include <queue> #include <vector> #include <utility> #include <tr1/unordered_map> #include <set> #include <boost/tuple/tuple_comparison.hpp> #include <boost/functional/hash.hpp> #include <boost/tuple/tuple.hpp> #include "sentence_pair.h" #include "tdict.h" #include "wordid.h" #include "array2d.h" using namespace std; using namespace boost; using std::tr1::unordered_map; using boost::tuple; namespace { inline bool IsWhitespace(char c) { return c == ' ' || c == '\t'; } inline void SkipWhitespace(const char* buf, int* ptr) { while (buf[*ptr] && IsWhitespace(buf[*ptr])) { ++(*ptr); } } } Extract::RuleObserver::~RuleObserver() { cerr << "Rules extracted: " << count << endl; } void Extract::ExtractBasePhrases(const int max_base_phrase_size, const AnnotatedParallelSentence& sentence, vector<ParallelSpan>* phrases) { phrases->clear(); vector<pair<int,int> > f_spans(sentence.f_len, pair<int,int>(sentence.e_len, 0)); vector<pair<int,int> > e_spans(sentence.e_len, pair<int,int>(sentence.f_len, 0)); // for each alignment point in e, precompute the minimal consistent phrases in f // for each alignment point in f, precompute the minimal consistent phrases in e for (int i = 0; i < sentence.f_len; ++i) { for (int j = 0; j < sentence.e_len; ++j) { if (sentence.aligned(i,j)) { if (j < f_spans[i].first) f_spans[i].first = j; f_spans[i].second = j+1; if (i < e_spans[j].first) e_spans[j].first = i; e_spans[j].second = i+1; } } } for (int i1 = 0; i1 < sentence.f_len; ++i1) { if (sentence.f_aligned[i1] == 0) continue; int j1 = sentence.e_len; int j2 = 0; const int i_limit = min(sentence.f_len, i1 + max_base_phrase_size); for (int i2 = i1 + 1; i2 <= i_limit; ++i2) { if (sentence.f_aligned[i2-1] == 0) continue; // cerr << "F has aligned span " << i1 << " to " << i2 << endl; j1 = min(j1, f_spans[i2-1].first); j2 = max(j2, f_spans[i2-1].second); if (j1 >= j2) continue; if (j2 - j1 > max_base_phrase_size) continue; int condition = 0; for (int j = j1; j < j2; ++j) { if (e_spans[j].first < i1) { condition = 1; break; } if (e_spans[j].second > i2) { condition = 2; break; } } if (condition == 1) break; if (condition == 2) continue; // category types added later! phrases->push_back(ParallelSpan(i1, i2, j1, j2)); // cerr << i1 << " " << i2 << " : " << j1 << " " << j2 << endl; } } } void Extract::LoosenPhraseBounds(const AnnotatedParallelSentence& sentence, const int max_base_phrase_size, vector<ParallelSpan>* phrases) { const int num_phrases = phrases->size(); map<int, map<int, map<int, map<int, bool> > > > marker; for (int i = 0; i < num_phrases; ++i) { const ParallelSpan& cur = (*phrases)[i]; marker[cur.i1][cur.i2][cur.j1][cur.j2] = true; } for (int i = 0; i < num_phrases; ++i) { const ParallelSpan& cur = (*phrases)[i]; const int i1_max = cur.i1; const int i2_min = cur.i2; const int j1_max = cur.j1; const int j2_min = cur.j2; int i1_min = i1_max; while (i1_min > 0 && sentence.f_aligned[i1_min-1] == 0) { --i1_min; } int j1_min = j1_max; while (j1_min > 0 && sentence.e_aligned[j1_min-1] == 0) { --j1_min; } int i2_max = i2_min; while (i2_max < sentence.f_len && sentence.f_aligned[i2_max] == 0) { ++i2_max; } int j2_max = j2_min; while (j2_max < sentence.e_len && sentence.e_aligned[j2_max] == 0) { ++j2_max; } for (int i1 = i1_min; i1 <= i1_max; ++i1) { const int ilim = min(i2_max, i1 + max_base_phrase_size); for (int i2 = max(i1+1,i2_min); i2 <= ilim; ++i2) { for (int j1 = j1_min; j1 <= j1_max; ++j1) { const int jlim = min(j2_max, j1 + max_base_phrase_size); for (int j2 = max(j1+1, j2_min); j2 <= jlim; ++j2) { bool& seen = marker[i1][i2][j1][j2]; if (!seen) phrases->push_back(ParallelSpan(i1,i2,j1,j2)); seen = true; } } } } } } template <typename K, typename V> void lookup_and_append(const map<K, V> &dict, const K &key, V &output) { typename map<K, V>::const_iterator found = dict.find(key); if (found != dict.end()) copy(found->second.begin(), found->second.end(), back_inserter(output)); } // this uses the TARGET span (i,j) to annotate phrases, will copy // phrases if there is more than one annotation. // TODO: support source annotation void Extract::AnnotatePhrasesWithCategoryTypes(const WordID default_cat, const map< tuple<short,short,short,short>, vector<WordID> > &types, vector<ParallelSpan>* phrases) { const int num_unannotated_phrases = phrases->size(); // have to use num_unannotated_phrases since we may grow the vector for (int i = 0; i < num_unannotated_phrases; ++i) { ParallelSpan& phrase = (*phrases)[i]; vector<WordID> cats; lookup_and_append(types, make_tuple(phrase.i1, phrase.i2, phrase.j1, phrase.j2), cats); lookup_and_append(types, make_tuple((short)-1, (short)-1, phrase.j1, phrase.j2), cats); lookup_and_append(types, make_tuple(phrase.i1, phrase.i2, (short)-1, (short)-1), cats); if (cats.empty() && default_cat != 0) { cats = vector<WordID>(1, default_cat); } if (cats.empty()) { cerr << "ERROR span " << phrase.i1 << "," << phrase.i2 << "-" << phrase.j1 << "," << phrase.j2 << " has no type. " "Did you forget --default_category?\n"; } phrase.cat = cats[0]; for (int ci = 1; ci < cats.size(); ++ci) { ParallelSpan new_phrase = phrase; new_phrase.cat = cats[ci]; phrases->push_back(new_phrase); } } } // a partially complete (f-side) of a rule struct RuleItem { vector<ParallelSpan> f; int i,j,syms,vars; explicit RuleItem(int pi) : i(pi), j(pi), syms(), vars() {} void Extend(const WordID& fword) { f.push_back(ParallelSpan(fword)); ++j; ++syms; } void Extend(const ParallelSpan& subphrase) { f.push_back(subphrase); j += subphrase.i2 - subphrase.i1; ++vars; ++syms; } bool RuleFEndsInVariable() const { if (f.size() > 0) { return f.back().IsVariable(); } else { return false; } } }; void Extract::ExtractConsistentRules(const AnnotatedParallelSentence& sentence, const vector<ParallelSpan>& phrases, const int max_vars, const int max_syms, const bool permit_adjacent_nonterminals, const bool require_aligned_terminal, RuleObserver* observer, vector<WordID>* all_cats) { const char bkoff_mrkr = '_'; queue<RuleItem> q; // agenda for BFS int max_len = -1; unordered_map<pair<short, short>, vector<ParallelSpan>, boost::hash<pair<short, short> > > fspans; vector<vector<ParallelSpan> > spans_by_start(sentence.f_len); set<int> starts; WordID bkoff; for (int i = 0; i < phrases.size(); ++i) { fspans[make_pair(phrases[i].i1,phrases[i].i2)].push_back(phrases[i]); max_len = max(max_len, phrases[i].i2 - phrases[i].i1); // have we already added a rule item starting at phrases[i].i1? if (starts.insert(phrases[i].i1).second) q.push(RuleItem(phrases[i].i1)); spans_by_start[phrases[i].i1].push_back(phrases[i]); } starts.clear(); vector<pair<int,int> > next_e(sentence.e_len); vector<WordID> cur_rhs_f, cur_rhs_e; vector<pair<short, short> > cur_terminal_align; vector<int> cur_es, cur_fs; while(!q.empty()) { const RuleItem& rule = q.front(); // extend the partial rule if (rule.j < sentence.f_len && (rule.j - rule.i) < max_len && rule.syms < max_syms) { RuleItem ew = rule; // extend with a word ew.Extend(sentence.f[ew.j]); q.push(ew); // with variables if (rule.vars < max_vars && !spans_by_start[rule.j].empty() && ((!rule.RuleFEndsInVariable()) || permit_adjacent_nonterminals)) { const vector<ParallelSpan>& sub_phrases = spans_by_start[rule.j]; for (int it = 0; it < sub_phrases.size(); ++it) { if (sub_phrases[it].i2 - sub_phrases[it].i1 + rule.j - rule.i <= max_len) { RuleItem ev = rule; ev.Extend(sub_phrases[it]); q.push(ev); assert(ev.j <= sentence.f_len); } } } } // determine if rule is consistent if (rule.syms > 0 && fspans.count(make_pair(rule.i,rule.j)) && (!rule.RuleFEndsInVariable() || rule.syms > 1)) { const vector<ParallelSpan>& orig_spans = fspans[make_pair(rule.i,rule.j)]; for (int s = 0; s < orig_spans.size(); ++s) { const ParallelSpan& orig_span = orig_spans[s]; const WordID lhs = orig_span.cat; for (int j = orig_span.j1; j < orig_span.j2; ++j) next_e[j].first = -1; int nt_index_e = 0; for (int i = 0; i < rule.f.size(); ++i) { const ParallelSpan& cur = rule.f[i]; if (cur.IsVariable()) next_e[cur.j1] = pair<int,int>(cur.j2, ++nt_index_e); } cur_rhs_f.clear(); cur_rhs_e.clear(); cur_terminal_align.clear(); cur_fs.clear(); cur_es.clear(); const int elen = orig_span.j2 - orig_span.j1; vector<int> isvar(elen, 0); int fbias = rule.i; bool bad_rule = false; bool has_aligned_terminal = false; for (int i = 0; i < rule.f.size(); ++i) { const ParallelSpan& cur = rule.f[i]; cur_rhs_f.push_back(cur.cat); if (cur.cat > 0) { // terminal if (sentence.f_aligned[fbias + i]) has_aligned_terminal = true; cur_fs.push_back(fbias + i); } else { // non-terminal int subj1 = cur.j1 - orig_span.j1; int subj2 = cur.j2 - orig_span.j1; if (subj1 < 0 || subj2 > elen) { bad_rule = true; break; } for (int j = subj1; j < subj2 && !bad_rule; ++j) { int& isvarj = isvar[j]; isvarj = true; } if (bad_rule) break; cur_fs.push_back(-1); fbias += cur.i2 - cur.i1 - 1; } } if (require_aligned_terminal && !has_aligned_terminal) bad_rule = true; if (!bad_rule) { for (int j = orig_span.j1; j < orig_span.j2; ++j) { if (next_e[j].first < 0) { cur_rhs_e.push_back(sentence.e[j]); cur_es.push_back(j); } else { cur_rhs_e.push_back(1 - next_e[j].second); // next_e[j].second is NT gap index cur_es.push_back(-1); j = next_e[j].first - 1; } } for (short i = 0; i < cur_fs.size(); ++i) if (cur_fs[i] >= 0) for (short j = 0; j < cur_es.size(); ++j) if (cur_es[j] >= 0 && sentence.aligned(cur_fs[i],cur_es[j])) cur_terminal_align.push_back(make_pair(i,j)); //observer->CountRule(lhs, cur_rhs_f, cur_rhs_e, cur_terminal_align); if(!all_cats->empty()) { //produce the backoff grammar if the category wordIDs are available for (int i = 0; i < cur_rhs_f.size(); ++i) { if(cur_rhs_f[i] < 0) { //cerr << cur_rhs_f[i] << ": (cats,f) |" << TD::Convert(-cur_rhs_f[i]) << endl; string nonterm = TD::Convert(-cur_rhs_f[i]); nonterm+=bkoff_mrkr; bkoff = -TD::Convert(nonterm); cur_rhs_f[i]=bkoff; /*vector<WordID> rhs_f_bkoff; vector<WordID> rhs_e_bkoff; vector<pair<short,short> > bkoff_align; bkoff_align.clear(); bkoff_align.push_back(make_pair(0,0)); for (int cat = 0; cat < all_cats->size(); ++cat) { rhs_f_bkoff.clear(); rhs_e_bkoff.clear(); rhs_f_bkoff.push_back(-(*all_cats)[cat]); rhs_e_bkoff.push_back(0); observer->CountRule(bkoff,rhs_f_bkoff,rhs_e_bkoff,bkoff_align); }*/ } } } observer->CountRule(lhs, cur_rhs_f, cur_rhs_e, cur_terminal_align); } } } q.pop(); } }