#include "dtrain.h" bool dtrain_init(int argc, char** argv, po::variables_map* cfg) { po::options_description ini("Configuration File Options"); ini.add_options() ("input", po::value()->default_value("-"), "input file") ("output", po::value()->default_value("-"), "output weights file, '-' for STDOUT") ("input_weights", po::value(), "input weights file (e.g. from previous iteration)") ("decoder_config", po::value(), "configuration file for cdec") ("sample_from", po::value()->default_value("kbest"), "where to sample translations from: kbest, forest") ("k", po::value()->default_value(100), "how many translations to sample") ("filter", po::value()->default_value("uniq"), "filter kbest list: no, uniq") ("pair_sampling", po::value()->default_value("all"), "how to sample pairs: all, 5050, 108010, PRO") ("N", po::value()->default_value(3), "N for Ngrams (BLEU)") ("epochs", po::value()->default_value(2), "# of iterations T (per shard)") ("scorer", po::value()->default_value("stupid_bleu"), "scoring: bleu, stupid_*, smooth_*, approx_*") ("learning_rate", po::value()->default_value(0.0005), "learning rate") ("gamma", po::value()->default_value(0), "gamma for SVM (0 for perceptron)") ("select_weights", po::value()->default_value("last"), "output 'best' or 'last' weights ('VOID' to throw away)") ("unit_wv", po::value()->zero_tokens(), "Rescale weight vector after each input") ("l1_reg", po::value()->default_value("no"), "apply l1 regularization as in Tsuroka et al 2010") ("l1_reg_strength", po::value(), "l1 regularization strength") ("update_ok", po::value()->zero_tokens(), "include correctly ranked pairs into updates") ("stop_after", po::value()->default_value(0), "stop after X input sentences") ("keep_w", po::value()->zero_tokens(), "keep weights files for each iteration") ("print_weights", po::value(), "weights to print on each iteration") ("hstreaming", po::value(), "run in hadoop streaming mode, arg is a task id") ("tmp", po::value()->default_value("/tmp"), "temp dir to use") #ifdef DTRAIN_LOCAL ("refs,r", po::value(), "references in local mode") #endif ("noup", po::value()->zero_tokens(), "do not update weights"); po::options_description cl("Command Line Options"); cl.add_options() ("config,c", po::value(), "dtrain config file") ("quiet,q", po::value()->zero_tokens(), "be quiet") ("verbose,v", po::value()->zero_tokens(), "be verbose"); cl.add(ini); po::store(parse_command_line(argc, argv, cl), *cfg); if (cfg->count("config")) { ifstream ini_f((*cfg)["config"].as().c_str()); po::store(po::parse_config_file(ini_f, ini), *cfg); } po::notify(*cfg); if (!cfg->count("decoder_config")) { cerr << cl << endl; return false; } if (cfg->count("hstreaming") && (*cfg)["output"].as() != "-") { cerr << "When using 'hstreaming' the 'output' param should be '-'." << endl; return false; } #ifdef DTRAIN_LOCAL if ((*cfg)["input"].as() == "-") { cerr << "Can't use stdin as input with this binary. Recompile without DTRAIN_LOCAL" << endl; return false; } #endif if ((*cfg)["sample_from"].as() != "kbest" && (*cfg)["sample_from"].as() != "forest") { cerr << "Wrong 'sample_from' param: '" << (*cfg)["sample_from"].as() << "', use 'kbest' or 'forest'." << endl; return false; } if ((*cfg)["sample_from"].as() == "kbest" && (*cfg)["filter"].as() != "uniq" && (*cfg)["filter"].as() != "no") { cerr << "Wrong 'filter' param: '" << (*cfg)["filter"].as() << "', use 'uniq' or 'no'." << endl; return false; } string s = (*cfg)["pair_sampling"].as(); if (s != "all" && s != "5050" && s != "108010" && s != "PRO" && s != "alld") { cerr << "Wrong 'pair_sampling' param: '" << (*cfg)["pair_sampling"].as() << "'." << endl; return false; } if ((*cfg)["select_weights"].as() != "last" && (*cfg)["select_weights"].as() != "best" && (*cfg)["select_weights"].as() != "VOID") { cerr << "Wrong 'select_weights' param: '" << (*cfg)["select_weights"].as() << "', use 'last' or 'best'." << endl; return false; } return true; } int main(int argc, char** argv) { // handle most parameters po::variables_map cfg; if (!dtrain_init(argc, argv, &cfg)) exit(1); // something is wrong bool quiet = false; if (cfg.count("quiet")) quiet = true; bool verbose = false; if (cfg.count("verbose")) verbose = true; bool noup = false; if (cfg.count("noup")) noup = true; bool hstreaming = false; string task_id; if (cfg.count("hstreaming")) { hstreaming = true; quiet = true; task_id = cfg["hstreaming"].as(); cerr.precision(17); } bool unit_wv = false; if (cfg.count("unit_wv")) unit_wv = true; HSReporter rep(task_id); bool keep_w = false; if (cfg.count("keep_w")) keep_w = true; bool update_ok = false; if (cfg.count("update_ok")) update_ok = true; const unsigned k = cfg["k"].as(); const unsigned N = cfg["N"].as(); const unsigned T = cfg["epochs"].as(); const unsigned stop_after = cfg["stop_after"].as(); const string filter_type = cfg["filter"].as(); const string sample_from = cfg["sample_from"].as(); const string pair_sampling = cfg["pair_sampling"].as(); const string select_weights = cfg["select_weights"].as(); vector print_weights; if (cfg.count("print_weights")) boost::split(print_weights, cfg["print_weights"].as(), boost::is_any_of(" ")); // setup decoder register_feature_functions(); SetSilent(true); ReadFile ini_rf(cfg["decoder_config"].as()); if (!quiet) cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as() << "'" << endl; Decoder decoder(ini_rf.stream()); // scoring metric/scorer string scorer_str = cfg["scorer"].as(); LocalScorer* scorer; if (scorer_str == "bleu") { scorer = dynamic_cast(new BleuScorer); } else if (scorer_str == "stupid_bleu") { scorer = dynamic_cast(new StupidBleuScorer); } else if (scorer_str == "smooth_bleu") { scorer = dynamic_cast(new SmoothBleuScorer); } else if (scorer_str == "approx_bleu") { scorer = dynamic_cast(new ApproxBleuScorer(N)); } else { cerr << "Don't know scoring metric: '" << scorer_str << "', exiting." << endl; exit(1); } vector bleu_weights; scorer->Init(N, bleu_weights); if (!quiet) cerr << setw(26) << "scorer '" << scorer_str << "'" << endl << endl; // setup decoder observer MT19937 rng; // random number generator HypSampler* observer; if (sample_from == "kbest") observer = dynamic_cast(new KBestGetter(k, filter_type)); else observer = dynamic_cast(new KSampler(k, &rng)); observer->SetScorer(scorer); // init weights vector& dense_weights = decoder.CurrentWeightVector(); SparseVector lambdas, cumulative_penalties; if (cfg.count("input_weights")) Weights::InitFromFile(cfg["input_weights"].as(), &dense_weights); Weights::InitSparseVector(dense_weights, &lambdas); // meta params for perceptron, SVM weight_t eta = cfg["learning_rate"].as(); weight_t gamma = cfg["gamma"].as(); // l1 regularization bool l1naive = false; bool l1clip = false; bool l1cumul = false; weight_t l1_reg = 0; if (cfg["l1_reg"].as() != "no") { string s = cfg["l1_reg"].as(); if (s == "naive") l1naive = true; else if (s == "clip") l1clip = true; else if (s == "cumul") l1cumul = true; l1_reg = cfg["l1_reg_strength"].as(); } // output string output_fn = cfg["output"].as(); // input string input_fn = cfg["input"].as(); ReadFile input(input_fn); // buffer input for t > 0 vector src_str_buf; // source strings (decoder takes only strings) vector > ref_ids_buf; // references as WordID vecs // where temp files go string tmp_path = cfg["tmp"].as(); vector w_tmp_files; // used for keep_w #ifdef DTRAIN_LOCAL string refs_fn = cfg["refs"].as(); ReadFile refs(refs_fn); #else string grammar_buf_fn = gettmpf(tmp_path, "dtrain-grammars"); ogzstream grammar_buf_out; grammar_buf_out.open(grammar_buf_fn.c_str()); #endif unsigned in_sz = UINT_MAX; // input index, input size vector > all_scores; score_t max_score = 0.; unsigned best_it = 0; float overall_time = 0.; // output cfg if (!quiet) { cerr << _p5; cerr << endl << "dtrain" << endl << "Parameters:" << endl; cerr << setw(25) << "k " << k << endl; cerr << setw(25) << "N " << N << endl; cerr << setw(25) << "T " << T << endl; if (cfg.count("stop-after")) cerr << setw(25) << "stop_after " << stop_after << endl; if (cfg.count("input_weights")) cerr << setw(25) << "weights in" << cfg["input_weights"].as() << endl; cerr << setw(25) << "input " << "'" << input_fn << "'" << endl; #ifdef DTRAIN_LOCAL cerr << setw(25) << "refs " << "'" << refs_fn << "'" << endl; #endif cerr << setw(25) << "output " << "'" << output_fn << "'" << endl; if (sample_from == "kbest") cerr << setw(25) << "filter " << "'" << filter_type << "'" << endl; cerr << setw(25) << "learning rate " << eta << endl; cerr << setw(25) << "gamma " << gamma << endl; cerr << setw(25) << "sample from " << "'" << sample_from << "'" << endl; cerr << setw(25) << "pairs " << "'" << pair_sampling << "'" << endl; cerr << setw(25) << "select weights " << "'" << select_weights << "'" << endl; if (cfg.count("l1_reg")) cerr << setw(25) << "l1 reg " << l1_reg << " '" << cfg["l1_reg"].as() << "'" << endl; if (update_ok) cerr << setw(25) << "up ok " << update_ok << endl; if (unit_wv) cerr << setw(25) << "unit weight vec " << unit_wv << endl; if (!verbose) cerr << "(a dot represents " << DTRAIN_DOTS << " lines of input)" << endl; } for (unsigned t = 0; t < T; t++) // T epochs { if (hstreaming) cerr << "reporter:status:Iteration #" << t+1 << " of " << T << endl; time_t start, end; time(&start); #ifndef DTRAIN_LOCAL igzstream grammar_buf_in; if (t > 0) grammar_buf_in.open(grammar_buf_fn.c_str()); #endif score_t score_sum = 0.; score_t model_sum(0); unsigned ii = 0, rank_errors = 0, margin_violations = 0, npairs = 0; if (!quiet) cerr << "Iteration #" << t+1 << " of " << T << "." << endl; while(true) { string in; bool next = false, stop = false; // next iteration or premature stop if (t == 0) { if(!getline(*input, in)) next = true; } else { if (ii == in_sz) next = true; // stop if we reach the end of our input } // stop after X sentences (but still iterate for those) if (stop_after > 0 && stop_after == ii && !next) stop = true; // produce some pretty output if (!quiet && !verbose) { if (ii == 0) cerr << " "; if ((ii+1) % (DTRAIN_DOTS) == 0) { cerr << "."; cerr.flush(); } if ((ii+1) % (20*DTRAIN_DOTS) == 0) { cerr << " " << ii+1 << endl; if (!next && !stop) cerr << " "; } if (stop) { if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl; cerr << "Stopping after " << stop_after << " input sentences." << endl; } else { if (next) { if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl; } } } // next iteration if (next || stop) break; // weights lambdas.init_vector(&dense_weights); // getting input vector ref_ids; // reference as vector #ifndef DTRAIN_LOCAL vector in_split; // input: sid\tsrc\tref\tpsg if (t == 0) { // handling input split_in(in, in_split); if (hstreaming && ii == 0) cerr << "reporter:counter:" << task_id << ",First ID," << in_split[0] << endl; // getting reference vector ref_tok; boost::split(ref_tok, in_split[2], boost::is_any_of(" ")); register_and_convert(ref_tok, ref_ids); ref_ids_buf.push_back(ref_ids); // process and set grammar bool broken_grammar = true; for (string::iterator it = in.begin(); it != in.end(); it++) { if (!isspace(*it)) { broken_grammar = false; break; } } if (broken_grammar) continue; boost::replace_all(in, "\t", "\n"); in += "\n"; grammar_buf_out << in << DTRAIN_GRAMMAR_DELIM << " " << in_split[0] << endl; decoder.SetSentenceGrammarFromString(in); src_str_buf.push_back(in_split[1]); // decode observer->SetRef(ref_ids); decoder.Decode(in_split[1], observer); } else { // get buffered grammar string grammar_str; while (true) { string rule; getline(grammar_buf_in, rule); if (boost::starts_with(rule, DTRAIN_GRAMMAR_DELIM)) break; grammar_str += rule + "\n"; } decoder.SetSentenceGrammarFromString(grammar_str); // decode observer->SetRef(ref_ids_buf[ii]); decoder.Decode(src_str_buf[ii], observer); } #else if (t == 0) { string r_; getline(*refs, r_); vector ref_tok; boost::split(ref_tok, r_, boost::is_any_of(" ")); register_and_convert(ref_tok, ref_ids); ref_ids_buf.push_back(ref_ids); src_str_buf.push_back(in); } else { ref_ids = ref_ids_buf[ii]; } observer->SetRef(ref_ids); if (t == 0) decoder.Decode(in, observer); else decoder.Decode(src_str_buf[ii], observer); #endif // get (scored) samples vector* samples = observer->GetSamples(); if (verbose) { cerr << "--- ref for " << ii << " "; if (t > 0) printWordIDVec(ref_ids_buf[ii]); else printWordIDVec(ref_ids); for (unsigned u = 0; u < samples->size(); u++) { cerr << _p5 << _np << "[" << u << ". '"; printWordIDVec((*samples)[u].w); cerr << "'" << endl; cerr << "SCORE=" << (*samples)[0].score << ",model="<< (*samples)[0].model << endl; cerr << "F{" << (*samples)[0].f << "} ]" << endl << endl; } } score_sum += (*samples)[0].score; model_sum += (*samples)[0].model; // weight updates if (!noup) { vector > pairs; if (pair_sampling == "all") all_pairs(samples, pairs); if (pair_sampling == "5050") rand_pairs_5050(samples, pairs, &rng); if (pair_sampling == "108010") multpart108010(samples, pairs); if (pair_sampling == "PRO") PROsampling(samples, pairs); if (pair_sampling == "alld") all_pairs_discard(samples, pairs); npairs += pairs.size(); for (vector >::iterator it = pairs.begin(); it != pairs.end(); it++) { score_t rank_error = it->second.score - it->first.score; if (!gamma) { // perceptron if (rank_error > 0) { SparseVector diff_vec = it->second.f - it->first.f; lambdas.plus_eq_v_times_s(diff_vec, eta); rank_errors++; } else { if (update_ok) { SparseVector diff_vec = it->first.f - it->second.f; lambdas.plus_eq_v_times_s(diff_vec, eta); } } if (it->first.model - it->second.model < 1) margin_violations++; } else { // SVM score_t margin = it->first.model - it->second.model; if (rank_error > 0 || margin < 1) { SparseVector diff_vec = it->second.f - it->first.f; lambdas.plus_eq_v_times_s(diff_vec, eta); if (rank_error > 0) rank_errors++; if (margin < 1) margin_violations++; } // regularization lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./npairs)); } } //////// // TEST THIS // reset cumulative_penalties after 1 iter? // do this only once per INPUT (not per pair) if (l1naive) { for (unsigned d = 0; d < lambdas.size(); d++) { weight_t v = lambdas.get(d); lambdas.set_value(d, v - sign(v) * l1_reg); } } else if (l1clip) { for (unsigned d = 0; d < lambdas.size(); d++) { if (lambdas.nonzero(d)) { weight_t v = lambdas.get(d); if (v > 0) { lambdas.set_value(d, max(0., v - l1_reg)); } else { lambdas.set_value(d, min(0., v + l1_reg)); } } } } else if (l1cumul) { weight_t acc_penalty = (ii+1) * l1_reg; // ii is the index of the current input for (unsigned d = 0; d < lambdas.size(); d++) { if (lambdas.nonzero(d)) { weight_t v = lambdas.get(d); weight_t penalty = 0; if (v > 0) { penalty = max(0., v-(acc_penalty + cumulative_penalties.get(d))); } else { penalty = min(0., v+(acc_penalty - cumulative_penalties.get(d))); } lambdas.set_value(d, penalty); cumulative_penalties.set_value(d, cumulative_penalties.get(d)+penalty); } } } } //////// if (unit_wv && sample_from == "forest") lambdas /= lambdas.l2norm(); ++ii; if (hstreaming) { rep.update_counter("Seen #"+boost::lexical_cast(t+1), 1u); rep.update_counter("Seen", 1u); } } // input loop if (scorer_str == "approx_bleu") scorer->Reset(); if (t == 0) { in_sz = ii; // remember size of input (# lines) if (hstreaming) { rep.update_counter("|Input|", ii); rep.update_gcounter("|Input|", ii); rep.update_gcounter("Shards", 1u); } } #ifndef DTRAIN_LOCAL if (t == 0) { grammar_buf_out.close(); } else { grammar_buf_in.close(); } #endif // print some stats score_t score_avg = score_sum/(score_t)in_sz; score_t model_avg = model_sum/(score_t)in_sz; score_t score_diff, model_diff; if (t > 0) { score_diff = score_avg - all_scores[t-1].first; model_diff = model_avg - all_scores[t-1].second; } else { score_diff = score_avg; model_diff = model_avg; } if (!quiet) { cerr << _p5 << _p << "WEIGHTS" << endl; for (vector::iterator it = print_weights.begin(); it != print_weights.end(); it++) { cerr << setw(18) << *it << " = " << lambdas.get(FD::Convert(*it)) << endl; } cerr << " ---" << endl; cerr << _np << " 1best avg score: " << score_avg; cerr << _p << " (" << score_diff << ")" << endl; cerr << _np << "1best avg model score: " << model_avg; cerr << _p << " (" << model_diff << ")" << endl; cerr << " avg #pairs: "; cerr << _np << npairs/(float)in_sz << endl; cerr << " avg #rank err: "; cerr << rank_errors/(float)in_sz << endl; cerr << " avg #margin viol: "; cerr << margin_violations/float(in_sz) << endl; } if (hstreaming) { rep.update_counter("Score 1best avg #"+boost::lexical_cast(t+1), (unsigned)(score_avg*DTRAIN_SCALE)); rep.update_counter("Model 1best avg #"+boost::lexical_cast(t+1), (unsigned)(model_avg*DTRAIN_SCALE)); rep.update_counter("Pairs avg #"+boost::lexical_cast(t+1), (unsigned)((npairs/(weight_t)in_sz)*DTRAIN_SCALE)); rep.update_counter("Rank errors avg #"+boost::lexical_cast(t+1), (unsigned)((rank_errors/(weight_t)in_sz)*DTRAIN_SCALE)); rep.update_counter("Margin violations avg #"+boost::lexical_cast(t+1), (unsigned)((margin_violations/(weight_t)in_sz)*DTRAIN_SCALE)); unsigned nonz = (unsigned)lambdas.size_nonzero(); rep.update_counter("Non zero feature count #"+boost::lexical_cast(t+1), nonz); rep.update_gcounter("Non zero feature count #"+boost::lexical_cast(t+1), nonz); } pair remember; remember.first = score_avg; remember.second = model_avg; all_scores.push_back(remember); if (score_avg > max_score) { max_score = score_avg; best_it = t; } time (&end); float time_diff = difftime(end, start); overall_time += time_diff; if (!quiet) { cerr << _p2 << _np << "(time " << time_diff/60. << " min, "; cerr << time_diff/(float)in_sz<< " s/S)" << endl; } if (t+1 != T && !quiet) cerr << endl; if (noup) break; // write weights to file if (select_weights == "best" || keep_w) { lambdas.init_vector(&dense_weights); string w_fn = "weights." + boost::lexical_cast(t) + ".gz"; Weights::WriteToFile(w_fn, dense_weights, true); } } // outer loop #ifndef DTRAIN_LOCAL unlink(grammar_buf_fn.c_str()); #endif if (!noup) { if (!quiet) cerr << endl << "Writing weights file to '" << output_fn << "' ..." << endl; if (select_weights == "last") { // last WriteFile of(output_fn); // works with '-' ostream& o = *of.stream(); o.precision(17); o << _np; for (SparseVector::const_iterator it = lambdas.begin(); it != lambdas.end(); ++it) { if (it->second == 0) continue; o << FD::Convert(it->first) << '\t' << it->second << endl; } } else if (select_weights == "VOID") { // do nothing with the weights } else { // best if (output_fn != "-") { CopyFile("weights."+boost::lexical_cast(best_it)+".gz", output_fn); } else { ReadFile bestw("weights."+boost::lexical_cast(best_it)+".gz"); string o; cout.precision(17); cout << _np; while(getline(*bestw, o)) cout << o << endl; } if (!keep_w) { for (unsigned i = 0; i < T; i++) { string s = "weights." + boost::lexical_cast(i) + ".gz"; unlink(s.c_str()); } } } if (output_fn == "-" && hstreaming) cout << "__SHARD_COUNT__\t1" << endl; if (!quiet) cerr << "done" << endl; } if (!quiet) { cerr << _p5 << _np << endl << "---" << endl << "Best iteration: "; cerr << best_it+1 << " [SCORE '" << scorer_str << "'=" << max_score << "]." << endl; cerr << _p2 << "This took " << overall_time/60. << " min." << endl; } if (keep_w) { cout << endl << "Weight files per iteration:" << endl; for (unsigned i = 0; i < w_tmp_files.size(); i++) { cout << w_tmp_files[i] << endl; } } return 0; }