#include "dcommon.h" /* * make_ngrams * */ typedef map, size_t> Ngrams; Ngrams make_ngrams( vector& s, size_t N ) { Ngrams ngrams; vector ng; for ( size_t i = 0; i < s.size(); i++ ) { ng.clear(); for ( size_t j = i; j < min( i+N, s.size() ); j++ ) { ng.push_back( s[j] ); ngrams[ng]++; } } return ngrams; } /* * ngram_matches * */ NgramCounts make_ngram_counts( vector hyp, vector ref, size_t N ) { Ngrams hyp_ngrams = make_ngrams( hyp, N ); Ngrams ref_ngrams = make_ngrams( ref, N ); NgramCounts counts( N ); Ngrams::iterator it; Ngrams::iterator ti; for ( it = hyp_ngrams.begin(); it != hyp_ngrams.end(); it++ ) { ti = ref_ngrams.find( it->first ); if ( ti != ref_ngrams.end() ) { counts.add( it->second, ti->second, it->first.size() - 1 ); } else { counts.add( it->second, 0, it->first.size() - 1 ); } } return counts; } /* * brevity_penaly * */ double brevity_penaly( const size_t hyp_len, const size_t ref_len ) { if ( hyp_len > ref_len ) return 1; return exp( 1 - (double)ref_len/(double)hyp_len ); } /* * bleu * as in "BLEU: a Method for Automatic Evaluation of Machine Translation" (Papineni et al. '02) * page TODO * 0 if for N one of the counts = 0 */ double bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len, size_t N, vector weights ) { if ( hyp_len == 0 || ref_len == 0 ) return 0; if ( ref_len < N ) N = ref_len; float N_ = (float)N; if ( weights.empty() ) { for ( size_t i = 0; i < N; i++ ) weights.push_back( 1/N_ ); } double sum = 0; for ( size_t i = 0; i < N; i++ ) { if ( counts.clipped[i] == 0 || counts.sum[i] == 0 ) return 0; sum += weights[i] * log( (double)counts.clipped[i] / (double)counts.sum[i] ); } return brevity_penaly( hyp_len, ref_len ) * exp( sum ); } /* * stupid_bleu * as in "ORANGE: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation (Lin & Och '04) * page TODO * 0 iff no 1gram match */ double stupid_bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len, size_t N, vector weights ) { if ( hyp_len == 0 || ref_len == 0 ) return 0; if ( ref_len < N ) N = ref_len; float N_ = (float)N; if ( weights.empty() ) { for ( size_t i = 0; i < N; i++ ) weights.push_back( 1/N_ ); } double sum = 0; float add = 0; for ( size_t i = 0; i < N; i++ ) { if ( i == 1 ) add = 1; sum += weights[i] * log( ((double)counts.clipped[i] + add) / ((double)counts.sum[i] + add) ); } return brevity_penaly( hyp_len, ref_len ) * exp( sum ); } /* * smooth_bleu * as in "An End-to-End Discriminative Approach to Machine Translation" (Liang et al. '06) * page TODO * max. 0.9375 */ double smooth_bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len, const size_t N, vector weights ) { if ( hyp_len == 0 || ref_len == 0 ) return 0; float N_ = (float)N; if ( weights.empty() ) { for ( size_t i = 0; i < N; i++ ) weights.push_back( 1/N_ ); } double sum = 0; float j = 1; for ( size_t i = 0; i < N; i++ ) { if ( counts.clipped[i] == 0 || counts.sum[i] == 0) continue; sum += exp((weights[i] * log((double)counts.clipped[i]/(double)counts.sum[i]))) / pow( 2, N_-j+1 ); j++; } return brevity_penaly( hyp_len, ref_len ) * sum; } /* * approx_bleu * as in "Online Large-Margin Training for Statistical Machine Translation" (Watanabe et al. '07) * page TODO * */ double approx_bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len, const size_t N, vector weights ) { return bleu( counts, hyp_len, ref_len, N, weights ); } /* * register_and_convert * */ void register_and_convert(const vector& strs, vector& ids) { vector::const_iterator it; for ( it = strs.begin(); it < strs.end(); it++ ) { ids.push_back( TD::Convert( *it ) ); } } /* * * */ void test_ngrams() { cout << "Testing ngrams..." << endl << endl; size_t N = 5; cout << "N = " << N << endl; vector a; // hyp vector b; // ref cout << "a "; for (size_t i = 1; i <= 8; i++) { cout << i << " "; a.push_back(i); } cout << endl << "b "; for (size_t i = 1; i <= 4; i++) { cout << i << " "; b.push_back(i); } cout << endl << endl; NgramCounts c = make_ngram_counts( a, b, N ); assert( c.clipped[N-1] == 0 ); assert( c.sum[N-1] == 4 ); c.print(); c += c; cout << endl; c.print(); cout << endl; } /* * * */ double approx_equal( double x, double y ) { const double EPSILON = 1E-5; if ( x == 0 ) return fabs( y ) <= EPSILON; if ( y == 0 ) return fabs( x ) <= EPSILON; return fabs( x - y ) / max( fabs(x), fabs(y) ) <= EPSILON; } /* * * */ void test_metrics() { cout << "Testing metrics..." << endl << endl; using namespace boost::assign; vector a, b; vector expect_vanilla, expect_smooth, expect_stupid; a += "a a a a", "a a a a", "a", "a", "b", "a a a a", "a a", "a a a", "a b a"; // hyp b += "b b b b", "a a a a", "a", "b", "b b b b", "a", "a a", "a a a", "a b b"; // ref expect_vanilla += 0, 1, 1, 0, 0, .25, 1, 1, 0; expect_smooth += 0, .9375, .0625, 0, .00311169, .0441942, .1875, .4375, .161587; expect_stupid += 0, 1, 1, 0, .0497871, .25, 1, 1, .605707; vector aa, bb; vector aai, bbi; double vanilla, smooth, stupid; size_t N = 4; cout << "N = " << N << endl << endl; for ( size_t i = 0; i < a.size(); i++ ) { cout << " hyp: " << a[i] << endl; cout << " ref: " << b[i] << endl; aa.clear(); bb.clear(); aai.clear(); bbi.clear(); boost::split( aa, a[i], boost::is_any_of(" ") ); boost::split( bb, b[i], boost::is_any_of(" ") ); register_and_convert( aa, aai ); register_and_convert( bb, bbi ); NgramCounts counts = make_ngram_counts( aai, bbi, N ); vanilla = bleu( counts, aa.size(), bb.size(), N); smooth = smooth_bleu( counts, aa.size(), bb.size(), N); stupid = stupid_bleu( counts, aa.size(), bb.size(), N); assert( approx_equal(vanilla, expect_vanilla[i]) ); assert( approx_equal(smooth, expect_smooth[i]) ); assert( approx_equal(stupid, expect_stupid[i]) ); cout << setw(14) << "bleu = " << vanilla << endl; cout << setw(14) << "smooth bleu = " << smooth << endl; cout << setw(14) << "stupid bleu = " << stupid << endl << endl; } cout << endl; } /* * * */ void test_SetWeights() { cout << "Testing Weights::SetWeight..." << endl << endl; Weights weights; SparseVector lambdas; weights.InitSparseVector( &lambdas ); weights.SetWeight( &lambdas, "test", 0 ); weights.SetWeight( &lambdas, "test1", 1 ); WordID fid = FD::Convert( "test2" ); weights.SetWeight( &lambdas, fid, 2 ); string fn = "weights-test"; cout << "FD::NumFeats() " << FD::NumFeats() << endl; assert( FD::NumFeats() == 4 ); weights.WriteToFile( fn, true ); cout << endl; } /* * * */ void run_tests() { cout << endl; test_ngrams(); cout << endl; test_metrics(); cout << endl; test_SetWeights(); exit(0); } void print_FD() { for ( size_t i = 0; i < FD::NumFeats(); i++ ) cout << FD::Convert(i)<< endl; }