dtrain ====== Ideas ----- * *MULTIPARTITE* ranking (1 vs all, cluster model/score) * *REMEMBER* sampled translations (merge) * *SELECT* iteration with highest (_real_) BLEU? * *GENERATED* data? (perfect translation in kbest) * *CACHING* (ngrams for scoring) * hadoop *PIPES* imlementation * *ITERATION* variants (shuffle resulting weights, re-iterate) * *MORE THAN ONE* reference for BLEU? * *RANDOM RESTARTS* * use separate TEST SET for each shard Uncertain, known bugs, problems ------------------------------- * cdec kbest vs 1best (no -k param), rescoring (ref?)? => ok(?) * no sparse vector in decoder => ok/fixed * PhraseModel_* features (0..99 seem to be generated, why 99?) * flex scanner jams on malicious input, we could skip that * input/grammar caching (strings, files) FIXME ----- * merge with cdec master Data ----
nc-v6.de-en peg nc-v6.de-en.loo peg nc-v6.de-en.giza.loo peg nc-v6.de-en.symgiza.loo pe nv-v6.de-en.cs pe nc-v6.de-en.cs.loo pe -- ep-v6.de-en.cs p ep-v6.de-en.cs.loo p p: prep, e: extract, g: grammar, d: dtrain