#include "line_optimizer.h" #include <limits> #include <algorithm> #include "sparse_vector.h" #include "ns.h" using namespace std; typedef ErrorSurface::const_iterator ErrorIter; // sort by increasing x-ints struct IntervalComp { bool operator() (const ErrorIter& a, const ErrorIter& b) const { return a->x < b->x; } }; double LineOptimizer::LineOptimize( const EvaluationMetric* metric, const vector<ErrorSurface>& surfaces, const LineOptimizer::ScoreType type, float* best_score, const double epsilon) { // cerr << "MIN=" << MINIMIZE_SCORE << " MAX=" << MAXIMIZE_SCORE << " MINE=" << type << endl; vector<ErrorIter> all_ints; for (vector<ErrorSurface>::const_iterator i = surfaces.begin(); i != surfaces.end(); ++i) { const ErrorSurface& surface = *i; for (ErrorIter j = surface.begin(); j != surface.end(); ++j) all_ints.push_back(j); } sort(all_ints.begin(), all_ints.end(), IntervalComp()); double last_boundary = all_ints.front()->x; SufficientStats acc; float& cur_best_score = *best_score; cur_best_score = (type == MAXIMIZE_SCORE ? -numeric_limits<float>::max() : numeric_limits<float>::max()); bool left_edge = true; double pos = numeric_limits<double>::quiet_NaN(); for (vector<ErrorIter>::iterator i = all_ints.begin(); i != all_ints.end(); ++i) { const ErrorSegment& seg = **i; if (seg.x - last_boundary > epsilon) { float sco = metric->ComputeScore(acc); if ((type == MAXIMIZE_SCORE && sco > cur_best_score) || (type == MINIMIZE_SCORE && sco < cur_best_score) ) { cur_best_score = sco; if (left_edge) { pos = seg.x - 0.1; left_edge = false; } else { pos = last_boundary + (seg.x - last_boundary) / 2; } //cerr << "NEW BEST: " << pos << " (score=" << cur_best_score << ")\n"; } // string xx = metric->DetailedScore(acc); cerr << "---- " << xx; #undef SHOW_ERROR_SURFACES #ifdef SHOW_ERROR_SURFACES cerr << "x=" << seg.x << "\ts=" << sco << "\n"; #endif last_boundary = seg.x; } // cerr << "x-boundary=" << seg.x << "\n"; //string x2; acc.Encode(&x2); cerr << " ACC: " << x2 << endl; //string x1; seg.delta.Encode(&x1); cerr << " DELTA: " << x1 << endl; acc += seg.delta; } float sco = metric->ComputeScore(acc); if ((type == MAXIMIZE_SCORE && sco > cur_best_score) || (type == MINIMIZE_SCORE && sco < cur_best_score) ) { cur_best_score = sco; if (left_edge) { pos = 0; } else { pos = last_boundary + 1000.0; } } return pos; } void LineOptimizer::RandomUnitVector(const vector<int>& features_to_optimize, SparseVector<double>* axis, RandomNumberGenerator<boost::mt19937>* rng) { axis->clear(); for (int i = 0; i < features_to_optimize.size(); ++i) axis->set_value(features_to_optimize[i], rng->NextNormal(0.0,1.0)); (*axis) /= axis->l2norm(); } void LineOptimizer::CreateOptimizationDirections( const vector<int>& features_to_optimize, int additional_random_directions, RandomNumberGenerator<boost::mt19937>* rng, vector<SparseVector<double> >* dirs , bool include_orthogonal ) { dirs->clear(); typedef SparseVector<double> Dir; vector<Dir> &out=*dirs; int i=0; if (include_orthogonal) for (;i<features_to_optimize.size();++i) { Dir d; d.set_value(features_to_optimize[i],1.); out.push_back(d); } out.resize(i+additional_random_directions); for (;i<out.size();++i) RandomUnitVector(features_to_optimize, &out[i], rng); cerr << "Generated " << out.size() << " total axes to optimize along.\n"; }