#include "tromble_loss.h" #include "fast_lexical_cast.hpp" #include <boost/algorithm/string/predicate.hpp> #include <boost/circular_buffer.hpp> #include <boost/functional/hash.hpp> #include <boost/range/iterator_range.hpp> #include <boost/tokenizer.hpp> #include <boost/unordered_map.hpp> #include <cmath> #include <fstream> #include <vector> #include "sentence_metadata.h" #include "trule.h" #include "tdict.h" using namespace std; namespace { typedef unsigned char GramCount; struct RefCounts { GramCount max; std::vector<GramCount> refs; size_t length; }; typedef boost::unordered_map<std::vector<WordID>, size_t, boost::hash<std::vector<WordID> > > NGramMap; // Take all the n-grams in the references and stuff them into ngrams. void MakeNGramMapFromReferences(const vector<vector<WordID> > &references, int n, vector<RefCounts> *counts, NGramMap *ngrams) { ngrams->clear(); std::pair<vector<WordID>, size_t> insert_me; vector<WordID> &ngram = insert_me.first; ngram.reserve(n); size_t &id = insert_me.second; id = 0; for (int refi = 0; refi < references.size(); ++refi) { const vector<WordID>& ref = references[refi]; const int s = ref.size(); for (int j=0; j<s; ++j) { const int remaining = s-j; const int k = (n < remaining ? n : remaining); ngram.clear(); for (unsigned int i = 0; i < k; ++i) { ngram.push_back(ref[j + i]); std::pair<NGramMap::iterator, bool> ret(ngrams->insert(insert_me)); if (ret.second) { counts->resize(id + 1); RefCounts &ref_counts = counts->back(); ref_counts.max = 1; ref_counts.refs.resize(references.size()); ref_counts.refs[refi] = 1; ref_counts.length = ngram.size(); ++id; } else { RefCounts &ref_counts = (*counts)[ret.first->second]; ref_counts.max = std::max(ref_counts.max, ++ref_counts.refs[refi]); } } } } } struct MutableState { MutableState(void *from, size_t n) : length(reinterpret_cast<size_t*>(from)), left(reinterpret_cast<WordID *>(length + 1)), right(left + n - 1), counts(reinterpret_cast<GramCount *>(right + n - 1)) {} size_t *length; WordID *left, *right; GramCount *counts; static size_t Size(size_t n, size_t bound_ngram_id) { return sizeof(size_t) + (n - 1) * 2 * sizeof(WordID) + bound_ngram_id * sizeof(GramCount); } }; struct ConstState { ConstState(const void *from, size_t n) : length(reinterpret_cast<const size_t*>(from)), left(reinterpret_cast<const WordID *>(length + 1)), right(left + n - 1), counts(reinterpret_cast<const GramCount *>(right + n - 1)) {} const size_t *length; const WordID *left, *right; const GramCount *counts; static size_t Size(size_t n, size_t bound_ngram_id) { return sizeof(size_t) + (n - 1) * 2 * sizeof(WordID) + bound_ngram_id * sizeof(GramCount); } }; template <class T> struct CompatibleHashRange : public std::unary_function<const boost::iterator_range<T> &, size_t> { size_t operator()(const boost::iterator_range<T> &range) const { return boost::hash_range(range.begin(), range.end()); } }; template <class T> struct CompatibleEqualsRange : public std::binary_function<const boost::iterator_range<T> &, const std::vector<WordID> &, size_t> { size_t operator()(const boost::iterator_range<T> &range, const std::vector<WordID> &vec) const { return boost::algorithm::equals(range, vec); } size_t operator()(const std::vector<WordID> &vec, const boost::iterator_range<T> &range) const { return boost::algorithm::equals(range, vec); } }; void AddWord(const boost::circular_buffer<WordID> &segment, size_t min_length, const NGramMap &ref_grams, GramCount *counters) { typedef boost::circular_buffer<WordID>::const_iterator BufferIt; typedef boost::iterator_range<BufferIt> SegmentRange; if (segment.size() < min_length) return; #if 0 CompatibleHashRange<BufferIt> hasher; CompatibleEqualsRange<BufferIt> equals; for (BufferIt seg_start(segment.end() - min_length); ; --seg_start) { NGramMap::const_iterator found = ref_grams.find(SegmentRange(seg_start, segment.end())); if (found == ref_grams.end()) break; ++counters[found->second]; if (seg_start == segment.begin()) break; } #endif } } // namespace class TrombleLossComputerImpl { public: explicit TrombleLossComputerImpl(const std::string ¶ms) : star_(TD::Convert("<{STAR}>")) { typedef boost::tokenizer<boost::char_separator<char> > Tokenizer; // Argument parsing std::string ref_file_name; Tokenizer tok(params, boost::char_separator<char>(" ")); Tokenizer::iterator i = tok.begin(); if (i == tok.end()) { std::cerr << "TrombleLossComputer needs a reference file name." << std::endl; exit(1); } ref_file_name = *i++; if (i == tok.end()) { std::cerr << "TrombleLossComputer needs to know how many references." << std::endl; exit(1); } num_refs_ = boost::lexical_cast<unsigned int>(*i++); for (; i != tok.end(); ++i) { thetas_.push_back(boost::lexical_cast<double>(*i)); } if (thetas_.empty()) { std::cerr << "TrombleLossComputer is pointless with no weight on n-grams." << std::endl; exit(1); } // Read references file. std::ifstream ref_file(ref_file_name.c_str()); if (!ref_file) { std::cerr << "Could not open TrombleLossComputer file " << ref_file_name << std::endl; exit(1); } std::string ref; vector<vector<WordID> > references(num_refs_); bound_ngram_id_ = 0; for (unsigned int sentence = 0; ref_file; ++sentence) { for (unsigned int refidx = 0; refidx < num_refs_; ++refidx) { if (!getline(ref_file, ref)) { if (refidx == 0) break; std::cerr << "Short read of " << refidx << " references for sentence " << sentence << std::endl; exit(1); } TD::ConvertSentence(ref, &references[refidx]); } ref_ids_.resize(sentence + 1); ref_counts_.resize(sentence + 1); MakeNGramMapFromReferences(references, thetas_.size(), &ref_counts_.back(), &ref_ids_.back()); bound_ngram_id_ = std::max(bound_ngram_id_, ref_ids_.back().size()); } } size_t StateSize() const { // n-1 boundary words plus counts for n-grams currently rendered as bytes even though most would fit in bits. // Also, this is cached by higher up classes so no need to cache here. return MutableState::Size(thetas_.size(), bound_ngram_id_); } double Traversal( const SentenceMetadata &smeta, const TRule &rule, const vector<const void*> &ant_contexts, void *out_context) const { // TODO: get refs from sentence metadata. // This will require resizable features. if (smeta.GetSentenceID() >= ref_ids_.size()) { std::cerr << "Sentence ID " << smeta.GetSentenceID() << " doesn't have references; there are only " << ref_ids_.size() << " references." << std::endl; exit(1); } const NGramMap &ngrams = ref_ids_[smeta.GetSentenceID()]; MutableState out_state(out_context, thetas_.size()); memset(out_state.counts, 0, bound_ngram_id_ * sizeof(GramCount)); boost::circular_buffer<WordID> history(thetas_.size()); std::vector<const void*>::const_iterator ant_context = ant_contexts.begin(); *out_state.length = 0; size_t pushed = 0; const size_t keep = thetas_.size() - 1; for (vector<WordID>::const_iterator rhs = rule.e().begin(); rhs != rule.e().end(); ++rhs) { if (*rhs < 1) { assert(ant_context != ant_contexts.end()); // Constituent ConstState rhs_state(*ant_context, thetas_.size()); *out_state.length += *rhs_state.length; { GramCount *accum = out_state.counts; for (const GramCount *c = rhs_state.counts; c != rhs_state.counts + ngrams.size(); ++c, ++accum) { *accum += *c; } } const WordID *w = rhs_state.left; bool long_constit = true; for (size_t i = 1; i <= keep; ++i, ++w) { if (*w == star_) { long_constit = false; break; } history.push_back(*w); if (++pushed == keep) { std::copy(history.begin(), history.end(), out_state.left); } // Now i is the length of the history coming from this constituent. So it needs at least i+1 words to have a cross-child add. AddWord(history, i + 1, ngrams, out_state.counts); } // If the consituent is shorter than thetas_.size(), then the // constituent's left is the entire constituent, so history is already // correct. Otherwise, the entire right hand side is the entire // history. if (long_constit) { history.assign(thetas_.size(), rhs_state.right, rhs_state.right + keep); } ++ant_context; } else { // Word ++*out_state.length; history.push_back(*rhs); if (++pushed == keep) { std::copy(history.begin(), history.end(), out_state.left); } AddWord(history, 1, ngrams, out_state.counts); } } // Fill in left and right constituents. if (pushed < keep) { std::copy(history.begin(), history.end(), out_state.left); for (WordID *i = out_state.left + pushed; i != out_state.left + keep; ++i) { *i = star_; } std::copy(out_state.left, out_state.left + keep, out_state.right); } else if(pushed == keep) { std::copy(history.begin(), history.end(), out_state.right); } else if ((pushed > keep) && !history.empty()) { std::copy(history.begin() + 1, history.end(), out_state.right); } std::vector<RefCounts>::const_iterator ref_info = ref_counts_[smeta.GetSentenceID()].begin(); // Clip the counts and count matches. // Indexed by reference then by length. std::vector<std::vector<unsigned int> > matches(num_refs_, std::vector<unsigned int>(thetas_.size())); for (GramCount *c = out_state.counts; c != out_state.counts + ngrams.size(); ++c, ++ref_info) { *c = std::min(*c, ref_info->max); if (*c) { for (unsigned int refidx = 0; refidx < num_refs_; ++refidx) { assert(ref_info->length >= 1); assert(ref_info->length - 1 < thetas_.size()); matches[refidx][ref_info->length - 1] += std::min(*c, ref_info->refs[refidx]); } } } double best_score = 0.0; for (unsigned int refidx = 0; refidx < num_refs_; ++refidx) { double score = 0.0; for (unsigned int j = 0; j < std::min(*out_state.length, thetas_.size()); ++j) { score += thetas_[j] * static_cast<double>(matches[refidx][j]) / static_cast<double>(*out_state.length - j); } best_score = std::max(best_score, score); } return best_score; } private: unsigned int num_refs_; // Indexed by sentence id. std::vector<NGramMap> ref_ids_; // Then by id from ref_ids_. std::vector<std::vector<RefCounts> > ref_counts_; // thetas_[0] is the weight for 1-grams std::vector<double> thetas_; // All ngram ids in ref_ids_ are < this value. size_t bound_ngram_id_; const WordID star_; }; TrombleLossComputer::TrombleLossComputer(const std::string ¶ms) : boost::base_from_member<PImpl>(new TrombleLossComputerImpl(params)), FeatureFunction(boost::base_from_member<PImpl>::member->StateSize()), fid_(FD::Convert("TrombleLossComputer")) {} TrombleLossComputer::~TrombleLossComputer() {} void TrombleLossComputer::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const vector<const void*>& ant_contexts, SparseVector<double>* features, SparseVector<double>* estimated_features, void* out_context) const { (void) estimated_features; const double loss = boost::base_from_member<PImpl>::member->Traversal(smeta, *edge.rule_, ant_contexts, out_context); features->set_value(fid_, loss); }