#ifndef ORACLE_BLEU_H #define ORACLE_BLEU_H #define DEBUG_ORACLE_BLEU #include <sstream> #include <iostream> #include <string> #include <vector> #include <boost/program_options.hpp> #include <boost/program_options/variables_map.hpp> #include "scorer.h" #include "hg.h" #include "ff_factory.h" #include "ff_bleu.h" #include "sparse_vector.h" #include "viterbi.h" #include "sentence_metadata.h" #include "apply_models.h" #include "kbest.h" #include "timing_stats.h" #include "sentences.h" //TODO: put function impls into .cc //TODO: move Translation into its own .h and use in cdec struct Translation { typedef std::vector<WordID> Sentence; Sentence sentence; FeatureVector features; Translation() { } Translation(Hypergraph const& hg,WeightVector *feature_weights=0) { Viterbi(hg,feature_weights); } void Viterbi(Hypergraph const& hg,WeightVector *feature_weights=0) // weights are only for checking that scoring is correct { ViterbiESentence(hg,&sentence); features=ViterbiFeatures(hg,feature_weights,true); } void Print(std::ostream &out,std::string pre=" +Oracle BLEU ",bool include_0_fid=true) const { out<<pre<<"Viterbi: "<<TD::GetString(sentence)<<"\n"; out<<pre<<"features: "<<features; if (include_0_fid && features.nonzero(0)) out<< " dummy-feature(0)="<<features.get(0); out<<std::endl; } bool is_null() { return features.empty() /* && sentence.empty() */; } }; struct Oracle { Translation model,fear,hope; bool is_null() { return model.is_null() /* && fear.is_null() && hope.is_null() */; } // feature 0 will be the error rate in fear and hope // move toward hope FeatureVector ModelHopeGradient() const { FeatureVector r=hope.features-model.features; r.set_value(0,0); return r; } // move toward hope from fear FeatureVector FearHopeGradient() const { FeatureVector r=hope.features-fear.features; r.set_value(0,0); return r; } void Print(std::ostream &out) const { hope.Print(out,"hope "); model.Print(out,"model "); fear.Print(out,"fear "); } friend inline std::ostream & operator<<(std::ostream &out,Oracle const& o) { o.Print(out); return out; } }; struct OracleBleu { typedef std::vector<std::string> Refs; Refs refs; WeightVector feature_weights_; DocScorer ds; void AddOptions(boost::program_options::options_description *opts) { using namespace boost::program_options; using namespace std; opts->add_options() ("show_derivation", bool_switch(&show_derivation), "show derivation tree in kbest") ("verbose",bool_switch(&verbose),"detailed logs") ("references,R", value<Refs >(&refs), "Translation reference files") ("oracle_loss", value<string>(&loss_name)->default_value("IBM_BLEU_3"), "IBM_BLEU_3 (default), IBM_BLEU etc") ("bleu_weight", value<double>(&bleu_weight)->default_value(1.), "weight to give the hope/fear loss function vs. model score") ; } int order; //TODO: move cdec.cc kbest output files function here //TODO: provide for loading most recent translation for every sentence (no more scale.. etc below? it's possible i messed the below up; i assume it's supposed to gracefully figure out the document 1bests as you go, then keep them up to date as you make multiple MIRA passes. provide alternative loading for MERT double scale_oracle; int oracle_doc_size; double tmp_src_length; double doc_src_length; void set_oracle_doc_size(int size) { oracle_doc_size=size; scale_oracle= 1-1./oracle_doc_size; doc_src_length=0; } OracleBleu(int doc_size=10) { set_oracle_doc_size(doc_size); show_derivation=false; } ScoreP doc_score,sentscore; // made from factory, so we delete them ScoreP GetScore(Sentence const& sentence,int sent_id) { return ScoreP(ds[sent_id]->ScoreCandidate(sentence)); } ScoreP GetScore(Hypergraph const& forest,int sent_id) { return GetScore(Translation(forest).sentence,sent_id); } double bleu_weight; // you have to call notify(conf) yourself, once, in main or similar bool verbose; void UseConf(boost::program_options::variables_map const& /* conf */) { using namespace std; // bleu_weight=conf["bleu_weight"].as<double>(); //set_loss(conf["oracle_loss"].as<string>()); //set_refs(conf["references"].as<Refs>()); init_loss(); init_refs(); } ScoreType loss; std::string loss_name; boost::shared_ptr<FeatureFunction> pff; void set_loss(std::string const& lossd) { loss_name=lossd; init_loss(); } void init_loss() { if (refs.empty()) return; loss=ScoreTypeFromString(loss_name); order=(loss==IBM_BLEU_3)?3:4; std::ostringstream param; param<<"-o "<<order; pff=ff_registry.Create("BLEUModel",param.str()); } bool is_null() const { return refs.empty(); } void set_refs(Refs const& r) { refs=r; init_refs(); } void init_refs() { if (is_null()) { #ifdef DEBUG_ORACLE_BLEU std::cerr<<"No references for oracle BLEU.\n"; #endif return; } assert(refs.size()); ds.Init(loss,refs,"",verbose); ensure_doc_score(); std::cerr << "Loaded " << ds.size() << " references for scoring with " << StringFromScoreType(loss) << std::endl; } // metadata has plain pointer, not shared, so we need to exist as long as it does SentenceMetadata MakeMetadata(Hypergraph const& forest,int sent_id) { std::vector<WordID> srcsent; ViterbiFSentence(forest,&srcsent); SentenceMetadata smeta(sent_id,Lattice()); //TODO: make reference from refs? smeta.SetSourceLength(srcsent.size()); smeta.SetScore(doc_score.get()); smeta.SetDocScorer(&ds); smeta.SetDocLen(doc_src_length); return smeta; } // destroys forest (replaces it w/ rescored oracle one) // sets sentscore Oracle ComputeOracle(SentenceMetadata const& smeta,Hypergraph *forest_in_out,WeightVector const& feature_weights,unsigned kbest=0,std::string const& forest_output="") { Hypergraph &forest=*forest_in_out; Oracle r; int sent_id=smeta.GetSentenceID(); r.model=Translation(forest); if (kbest) DumpKBest("model",sent_id, forest, kbest, true, forest_output); { Timer t("Forest Oracle rescoring:"); Hypergraph oracle_forest; Rescore(smeta,forest,&oracle_forest,feature_weights,bleu_weight); forest.swap(oracle_forest); } r.hope=Translation(forest); if (kbest) DumpKBest("oracle",sent_id, forest, kbest, true, forest_output); ReweightBleu(&forest,-bleu_weight); r.fear=Translation(forest); if (kbest) DumpKBest("negative",sent_id, forest, kbest, true, forest_output); return r; } // if doc_score wasn't init, add 1 counts to ngram acc. void ensure_doc_score() { if (!doc_score) { doc_score=Score::GetOne(loss); } } void Rescore(SentenceMetadata const& smeta,Hypergraph const& forest,Hypergraph *dest_forest,WeightVector const& feature_weights,double bleu_weight=1.0) { // the sentence bleu stats will get added to doc only if you call IncludeLastScore ensure_doc_score(); sentscore=GetScore(forest,smeta.GetSentenceID()); tmp_src_length = smeta.GetSourceLength(); //TODO: where does this come from? using namespace std; DenseWeightVector w; feature_weights_=feature_weights; feature_weights_.set_value(0,bleu_weight); feature_weights.init_vector(&w); ModelSet oracle_models(w,vector<FeatureFunction const*>(1,pff.get())); ApplyModelSet(forest, smeta, oracle_models, IntersectionConfiguration(exhaustive_t()), dest_forest); ReweightBleu(dest_forest,bleu_weight); } void IncludeLastScore(std::ostream *out=0) { double bleu_scale_ = doc_src_length * doc_score->ComputeScore(); doc_score->PlusEquals(*sentscore); doc_score->TimesEquals(scale_oracle); ScoreP().swap(sentscore); doc_src_length = (doc_src_length + tmp_src_length) * scale_oracle; if (out) { std::string d; doc_score->ScoreDetails(&d); *out << "SCALED SCORE: " << bleu_scale_ << "DOC BLEU " << doc_score->ComputeScore() << " " <<d << std::endl; } } void ReweightBleu(Hypergraph *dest_forest,double bleu_weight=-1.) { feature_weights_.set_value(0,bleu_weight); dest_forest->Reweight(feature_weights_); } bool show_derivation; template <class Filter> void kbest(int sent_id,Hypergraph const& forest,int k,std::ostream &kbest_out=std::cout,std::ostream &deriv_out=std::cerr) { using namespace std; using namespace boost; typedef KBest::KBestDerivations<Sentence, ESentenceTraversal,Filter> K; K kbest(forest,k); //add length (f side) src length of this sentence to the psuedo-doc src length count float curr_src_length = doc_src_length + tmp_src_length; for (int i = 0; i < k; ++i) { typename K::Derivation *d = kbest.LazyKthBest(forest.nodes_.size() - 1, i); if (!d) break; kbest_out << sent_id << " ||| " << TD::GetString(d->yield) << " ||| " << d->feature_values << " ||| " << log(d->score); if (!refs.empty()) { ScoreP sentscore = GetScore(d->yield,sent_id); sentscore->PlusEquals(*doc_score,float(1)); float bleu = curr_src_length * sentscore->ComputeScore(); kbest_out << " ||| " << bleu; } kbest_out<<endl<<flush; if (show_derivation) { deriv_out<<"\nsent_id="<<sent_id<<"."<<i<<" ||| "; //where i is candidate #/k deriv_out<<log(d->score)<<"\n"; deriv_out<<kbest.derivation_tree(*d,true); deriv_out<<"\n"<<flush; } } } // TODO decoder output should probably be moved to another file - how about oracle_bleu.h void DumpKBest(const int sent_id, const Hypergraph& forest, const int k, const bool unique, std::string const &kbest_out_filename_, std::string const &deriv_out_filename_) { WriteFile ko(kbest_out_filename_); std::cerr << "Output kbest to " << kbest_out_filename_ <<std::endl; std::ostringstream sderiv; sderiv << deriv_out_filename_; if (show_derivation) { sderiv << "/derivs." << sent_id; std::cerr << "Output derivations to " << deriv_out_filename_ << std::endl; } WriteFile oderiv(sderiv.str()); if (!unique) kbest<KBest::NoFilter<std::vector<WordID> > >(sent_id,forest,k,ko.get(),oderiv.get()); else { kbest<KBest::FilterUnique>(sent_id,forest,k,ko.get(),oderiv.get()); } } void DumpKBest(std::string const& suffix,const int sent_id, const Hypergraph& forest, const int k, const bool unique, std::string const& forest_output) { std::ostringstream kbest_string_stream; kbest_string_stream << forest_output << "/kbest_"<<suffix<< "." << sent_id; DumpKBest(sent_id, forest, k, unique, kbest_string_stream.str(), "-"); } }; #endif