#ifndef INSIDE_OUTSIDE_H_ #define INSIDE_OUTSIDE_H_ #include <vector> #include <algorithm> #include "hg.h" // semiring for Inside/Outside struct Boolean { bool x; Boolean() : x() { } Boolean(bool i) : x(i) { } operator bool() const { return x; } // careful - this might cause a disaster with (bool)a + Boolean(b). // normally you'd use the logical (short circuit) || && operators, but bool really is guaranteed to be 0 or 1 numerically. also note that | and & have equal precedence (!) void operator+=(Boolean o) { x|=o.x; } friend inline Boolean operator +(Boolean a,Boolean b) { return Boolean(a.x|b.x); } void operator*=(Boolean o) { x&=o.x; } friend inline Boolean operator *(Boolean a,Boolean b) { return Boolean(a.x&b.x); } }; // run the inside algorithm and return the inside score // if result is non-NULL, result will contain the inside // score for each node // NOTE: WeightType() must construct the semiring's additive identity // WeightType(1) must construct the semiring's multiplicative identity template<class WeightType, class WeightFunction> WeightType Inside(const Hypergraph& hg, std::vector<WeightType>* result = NULL, const WeightFunction& weight = WeightFunction()) { const unsigned num_nodes = hg.nodes_.size(); std::vector<WeightType> dummy; std::vector<WeightType>& inside_score = result ? *result : dummy; inside_score.clear(); inside_score.resize(num_nodes); // std::fill(inside_score.begin(), inside_score.end(), WeightType()); // clear handles for (unsigned i = 0; i < num_nodes; ++i) { WeightType* const cur_node_inside_score = &inside_score[i]; Hypergraph::EdgesVector const& in=hg.nodes_[i].in_edges_; const unsigned num_in_edges = in.size(); for (unsigned j = 0; j < num_in_edges; ++j) { const HG::Edge& edge = hg.edges_[in[j]]; WeightType score = weight(edge); for (unsigned k = 0; k < edge.tail_nodes_.size(); ++k) { const int tail_node_index = edge.tail_nodes_[k]; score *= inside_score[tail_node_index]; } *cur_node_inside_score += score; } } return inside_score.empty() ? WeightType(0) : inside_score.back(); } template<class WeightType, class WeightFunction> void Outside(const Hypergraph& hg, std::vector<WeightType>& inside_score, std::vector<WeightType>* result, const WeightFunction& weight = WeightFunction(), WeightType scale_outside = WeightType(1) ) { assert(result); const int num_nodes = hg.nodes_.size(); assert(static_cast<int>(inside_score.size()) == num_nodes); std::vector<WeightType>& outside_score = *result; outside_score.clear(); outside_score.resize(num_nodes); // std::fill(outside_score.begin(), outside_score.end(), WeightType()); // cleared outside_score.back() = scale_outside; for (int i = num_nodes - 1; i >= 0; --i) { const WeightType& head_node_outside_score = outside_score[i]; Hypergraph::EdgesVector const& in=hg.nodes_[i].in_edges_; const int num_in_edges = in.size(); for (int j = 0; j < num_in_edges; ++j) { const HG::Edge& edge = hg.edges_[in[j]]; WeightType head_and_edge_weight = weight(edge); head_and_edge_weight *= head_node_outside_score; const int num_tail_nodes = edge.tail_nodes_.size(); for (int k = 0; k < num_tail_nodes; ++k) { const int update_tail_node_index = edge.tail_nodes_[k]; WeightType* const tail_outside_score = &outside_score[update_tail_node_index]; WeightType inside_contribution = WeightType(1); for (int l = 0; l < num_tail_nodes; ++l) { const int other_tail_node_index = edge.tail_nodes_[l]; if (update_tail_node_index != other_tail_node_index) inside_contribution *= inside_score[other_tail_node_index]; } inside_contribution *= head_and_edge_weight; *tail_outside_score += inside_contribution; } } } } template <class K> // obviously not all semirings have a multiplicative inverse struct OutsideNormalize { bool enable; OutsideNormalize(bool enable=true) : enable(enable) {} K operator()(K k) { return enable?K(1)/k:K(1); } }; template <class K> struct Outside1 { K operator()(K) { return K(1); } }; template <class KType> struct InsideOutsides { // typedef typename KWeightFunction::Weight KType; typedef std::vector<KType> Ks; Ks inside,outside; KType root_inside() { return inside.back(); } InsideOutsides() { } template <class KWeightFunction> KType compute(Hypergraph const& hg,KWeightFunction const& kwf=KWeightFunction()) { return compute(hg,Outside1<KType>(),kwf); } template <class KWeightFunction,class O1> KType compute(Hypergraph const& hg,O1 outside1,KWeightFunction const& kwf=KWeightFunction()) { typedef typename KWeightFunction::Weight KType2; assert(sizeof(KType2)==sizeof(KType)); // why am I doing this? because I want to share the vectors used for tropical and prob_t semirings. should instead have separate value type from semiring operations? or suck it up and split the code calling in Prune* into 2 types (template) typedef std::vector<KType2> K2s; K2s &inside2=reinterpret_cast<K2s &>(inside); Inside<KType2,KWeightFunction>(hg, &inside2, kwf); KType scale=outside1(reinterpret_cast<KType const&>(inside2.back())); Outside<KType2,KWeightFunction>(hg, inside2, reinterpret_cast<K2s *>(&outside), kwf, reinterpret_cast<KType2 const&>(scale)); return root_inside(); } // XWeightFunction::Result is result template <class XWeightFunction> typename XWeightFunction::Result expect(Hypergraph const& hg,XWeightFunction const& xwf=XWeightFunction()) { typename XWeightFunction::Result x; // default constructor is semiring 0 for (int i = 0,num_nodes=hg.nodes_.size(); i < num_nodes; ++i) { Hypergraph::EdgesVector const& in=hg.nodes_[i].in_edges_; const int num_in_edges = in.size(); for (int j = 0; j < num_in_edges; ++j) { const HG::Edge& edge = hg.edges_[in[j]]; KType kbar_e = outside[i]; const int num_tail_nodes = edge.tail_nodes_.size(); for (int k = 0; k < num_tail_nodes; ++k) kbar_e *= inside[edge.tail_nodes_[k]]; x += xwf(edge) * kbar_e; } } return x; } template <class V,class VWeight> void compute_edge_marginals(Hypergraph const& hg,std::vector<V> &vs,VWeight const& weight) { vs.resize(hg.edges_.size()); for (int i = 0,num_nodes=hg.nodes_.size(); i < num_nodes; ++i) { Hypergraph::EdgesVector const& in=hg.nodes_[i].in_edges_; const int num_in_edges = in.size(); for (int j = 0; j < num_in_edges; ++j) { int edgei=in[j]; const HG::Edge& edge = hg.edges_[edgei]; V x=weight(edge)*outside[i]; const int num_tail_nodes = edge.tail_nodes_.size(); for (int k = 0; k < num_tail_nodes; ++k) x *= inside[edge.tail_nodes_[k]]; vs[edgei] = x; } } } }; // this is the Inside-Outside optimization described in Li and Eisner (EMNLP 2009) // for computing the inside algorithm over expensive semirings // (such as expectations over features). See Figure 4. // NOTE: XType * KType must be valid (and yield XType) // NOTE: This may do things slightly differently than you are used to, please // read the description in Li and Eisner (2009) carefully! template<class KType, class KWeightFunction, class XType, class XWeightFunction> KType InsideOutside(const Hypergraph& hg, XType* result_x, const KWeightFunction& kwf = KWeightFunction(), const XWeightFunction& xwf = XWeightFunction()) { InsideOutsides<KType> io; io.compute(hg,kwf); *result_x=io.expect(hg,xwf); return io.root_inside(); } #endif