#include "incremental.h" #include "hg.h" #include "fdict.h" #include "tdict.h" #include "lm/enumerate_vocab.hh" #include "lm/model.hh" #include "search/applied.hh" #include "search/config.hh" #include "search/context.hh" #include "search/edge.hh" #include "search/edge_generator.hh" #include "search/rule.hh" #include "search/vertex.hh" #include "search/vertex_generator.hh" #include "util/exception.hh" #include <boost/scoped_ptr.hpp> #include <boost/scoped_array.hpp> #include <iostream> #include <vector> namespace { struct MapVocab : public lm::EnumerateVocab { public: MapVocab() {} // Do not call after Lookup. void Add(lm::WordIndex index, const StringPiece &str) { const WordID cdec_id = TD::Convert(str.as_string()); if (cdec_id >= out_.size()) out_.resize(cdec_id + 1); out_[cdec_id] = index; } // Assumes Add has been called and will never be called again. lm::WordIndex FromCDec(WordID id) const { return out_[out_.size() > id ? id : 0]; } private: std::vector<lm::WordIndex> out_; }; template <class Model> class Incremental : public IncrementalBase { public: Incremental(const char *model_file, const std::vector<weight_t> &weights) : IncrementalBase(weights), m_(model_file, GetConfig()), lm_(weights[FD::Convert("KLanguageModel")]), oov_(weights[FD::Convert("KLanguageModel_OOV")]), word_penalty_(weights[FD::Convert("WordPenalty")]) { std::cerr << "Weights KLanguageModel " << lm_ << " KLanguageModel_OOV " << oov_ << " WordPenalty " << word_penalty_ << std::endl; } void Search(unsigned int pop_limit, const Hypergraph &hg) const; private: void ConvertEdge(const search::Context<Model> &context, search::Vertex *vertices, const Hypergraph::Edge &in, search::EdgeGenerator &gen) const; lm::ngram::Config GetConfig() { lm::ngram::Config ret; ret.enumerate_vocab = &vocab_; return ret; } MapVocab vocab_; const Model m_; const float lm_, oov_, word_penalty_; }; void PrintApplied(const Hypergraph &hg, const search::Applied final) { const std::vector<WordID> &words = static_cast<const Hypergraph::Edge*>(final.GetNote().vp)->rule_->e(); const search::Applied *child(final.Children()); for (std::vector<WordID>::const_iterator i = words.begin(); i != words.end(); ++i) { if (*i > 0) { std::cout << TD::Convert(*i) << ' '; } else { PrintApplied(hg, *child++); } } } template <class Model> void Incremental<Model>::Search(unsigned int pop_limit, const Hypergraph &hg) const { boost::scoped_array<search::Vertex> out_vertices(new search::Vertex[hg.nodes_.size()]); search::Config config(lm_, pop_limit, search::NBestConfig(1)); search::Context<Model> context(config, m_); search::SingleBest best; for (unsigned int i = 0; i < hg.nodes_.size() - 1; ++i) { search::EdgeGenerator gen; const Hypergraph::EdgesVector &down_edges = hg.nodes_[i].in_edges_; for (unsigned int j = 0; j < down_edges.size(); ++j) { unsigned int edge_index = down_edges[j]; ConvertEdge(context, out_vertices.get(), hg.edges_[edge_index], gen); } search::VertexGenerator<search::SingleBest> vertex_gen(context, out_vertices[i], best); gen.Search(context, vertex_gen); } const search::Applied top = out_vertices[hg.nodes_.size() - 2].BestChild(); if (!top.Valid()) { std::cout << "NO PATH FOUND" << std::endl; } else { PrintApplied(hg, top); std::cout << "||| " << top.GetScore() << std::endl; } } template <class Model> void Incremental<Model>::ConvertEdge(const search::Context<Model> &context, search::Vertex *vertices, const Hypergraph::Edge &in, search::EdgeGenerator &gen) const { const std::vector<WordID> &e = in.rule_->e(); std::vector<lm::WordIndex> words; words.reserve(e.size()); std::vector<search::PartialVertex> nts; unsigned int terminals = 0; float score = 0.0; for (std::vector<WordID>::const_iterator word = e.begin(); word != e.end(); ++word) { if (*word <= 0) { nts.push_back(vertices[in.tail_nodes_[-*word]].RootAlternate()); if (nts.back().Empty()) return; score += nts.back().Bound(); words.push_back(lm::kMaxWordIndex); } else { ++terminals; words.push_back(vocab_.FromCDec(*word)); } } search::PartialEdge out(gen.AllocateEdge(nts.size())); memcpy(out.NT(), &nts[0], sizeof(search::PartialVertex) * nts.size()); search::Note note; note.vp = ∈ out.SetNote(note); score += in.rule_->GetFeatureValues().dot(cdec_weights_); score -= static_cast<float>(terminals) * word_penalty_ / M_LN10; search::ScoreRuleRet res(search::ScoreRule(context.LanguageModel(), words, out.Between())); score += res.prob * lm_ + static_cast<float>(res.oov) * oov_; out.SetScore(score); gen.AddEdge(out); } } // namespace IncrementalBase *IncrementalBase::Load(const char *model_file, const std::vector<weight_t> &weights) { lm::ngram::ModelType model_type; if (!lm::ngram::RecognizeBinary(model_file, model_type)) model_type = lm::ngram::PROBING; switch (model_type) { case lm::ngram::PROBING: return new Incremental<lm::ngram::ProbingModel>(model_file, weights); case lm::ngram::REST_PROBING: return new Incremental<lm::ngram::RestProbingModel>(model_file, weights); default: UTIL_THROW(util::Exception, "Sorry this lm type isn't supported yet."); } } IncrementalBase::~IncrementalBase() {} IncrementalBase::IncrementalBase(const std::vector<weight_t> &weights) : cdec_weights_(weights) {}