#include "ff_wordalign.h" #include <algorithm> #include <iterator> #include <set> #include <sstream> #include <string> #include <cmath> #include <bitset> #include <tr1/unordered_map> #include <boost/tuple/tuple.hpp> #include "boost/tuple/tuple_comparison.hpp" #include <boost/functional/hash.hpp> #include "factored_lexicon_helper.h" #include "verbose.h" #include "alignment_pharaoh.h" #include "stringlib.h" #include "sentence_metadata.h" #include "hg.h" #include "fdict.h" #include "aligner.h" #include "tdict.h" // Blunsom hack #include "filelib.h" // Blunsom hack static const int MAX_SENTENCE_SIZE = 100; static const int kNULL_i = 255; // -1 as an unsigned char using namespace std; // TODO new feature: if a word is translated as itself and there is a transition back to the same word, fire a feature RelativeSentencePosition::RelativeSentencePosition(const string& param) : fid_(FD::Convert("RelativeSentencePosition")) { if (!param.empty()) { cerr << " Loading word classes from " << param << endl; condition_on_fclass_ = true; ReadFile rf(param); istream& in = *rf.stream(); set<WordID> classes; while(in) { string line; getline(in, line); if (line.empty()) continue; vector<WordID> v; TD::ConvertSentence(line, &v); pos_.push_back(v); for (int i = 0; i < v.size(); ++i) classes.insert(v[i]); } for (set<WordID>::iterator i = classes.begin(); i != classes.end(); ++i) { ostringstream os; os << "RelPos_FC:" << TD::Convert(*i); fids_[*i] = FD::Convert(os.str()); } } else { condition_on_fclass_ = false; } } void RelativeSentencePosition::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const vector<const void*>& // ant_states , SparseVector<double>* features, SparseVector<double>* // estimated_features , void* // state ) const { // if the source word is either null or the generated word // has no position in the reference if (edge.i_ == -1 || edge.prev_i_ == -1) return; assert(smeta.GetTargetLength() > 0); const double val = fabs(static_cast<double>(edge.i_) / smeta.GetSourceLength() - static_cast<double>(edge.prev_i_) / smeta.GetTargetLength()); features->set_value(fid_, val); if (condition_on_fclass_) { assert(smeta.GetSentenceID() < pos_.size()); const WordID cur_fclass = pos_[smeta.GetSentenceID()][edge.i_]; std::map<WordID, int>::const_iterator fidit = fids_.find(cur_fclass); assert(fidit != fids_.end()); const int fid = fidit->second; features->set_value(fid, val); } // cerr << f_len_ << " " << e_len_ << " [" << edge.i_ << "," << edge.j_ << "|" << edge.prev_i_ << "," << edge.prev_j_ << "]\t" << edge.rule_->AsString() << "\tVAL=" << val << endl; } LexNullJump::LexNullJump(const string& param) : FeatureFunction(1), fid_lex_null_(FD::Convert("JumpLexNull")), fid_null_lex_(FD::Convert("JumpNullLex")), fid_null_null_(FD::Convert("JumpNullNull")), fid_lex_lex_(FD::Convert("JumpLexLex")) {} void LexNullJump::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const vector<const void*>& ant_states, SparseVector<double>* features, SparseVector<double>* /* estimated_features */, void* state) const { char& dpstate = *((char*)state); if (edge.Arity() == 0) { // dpstate is 'N' = null or 'L' = lex if (edge.i_ < 0) { dpstate = 'N'; } else { dpstate = 'L'; } } else if (edge.Arity() == 1) { dpstate = *((unsigned char*)ant_states[0]); } else if (edge.Arity() == 2) { char left = *((char*)ant_states[0]); char right = *((char*)ant_states[1]); dpstate = right; if (left == 'N') { if (right == 'N') features->set_value(fid_null_null_, 1.0); else features->set_value(fid_null_lex_, 1.0); } else { // left == 'L' if (right == 'N') features->set_value(fid_lex_null_, 1.0); else features->set_value(fid_lex_lex_, 1.0); } } else { assert(!"something really unexpected is happening"); } } NewJump::NewJump(const string& param) : FeatureFunction(1), kBOS_(TD::Convert("BOS")), kEOS_(TD::Convert("EOS")) { cerr << " NewJump"; vector<string> argv; set<string> permitted; permitted.insert("use_binned_log_lengths"); permitted.insert("flen"); permitted.insert("elen"); permitted.insert("fprev"); permitted.insert("f0"); permitted.insert("f-1"); permitted.insert("f+1"); // also permitted f:FILENAME int argc = SplitOnWhitespace(param, &argv); set<string> config; string f_file; for (int i = 0; i < argc; ++i) { if (argv[i].size() > 2 && argv[i].find("f:") == 0) { assert(f_file.empty()); // only one f file! f_file = argv[i].substr(2); cerr << " source_file=" << f_file; } else { if (permitted.count(argv[i])) { assert(config.count(argv[i]) == 0); config.insert(argv[i]); cerr << " " << argv[i]; } else { cerr << "\nNewJump: don't understand param '" << argv[i] << "'\n"; abort(); } } } cerr << endl; use_binned_log_lengths_ = config.count("use_binned_log_lengths") > 0; f0_ = config.count("f0") > 0; fm1_ = config.count("f-1") > 0; fp1_ = config.count("f+1") > 0; fprev_ = config.count("fprev") > 0; elen_ = config.count("elen") > 0; flen_ = config.count("flen") > 0; if (f0_ || fm1_ || fp1_ || fprev_) { if (f_file.empty()) { cerr << "NewJump: conditioning on src but f:FILE not specified!\n"; abort(); } ReadFile rf(f_file); istream& in = *rf.stream(); string line; while(in) { getline(in, line); if (!in) continue; vector<WordID> v; TD::ConvertSentence(line, &v); src_.push_back(v); } } fid_str_ = "J"; if (flen_) fid_str_ += "F"; if (elen_) fid_str_ += "E"; if (f0_) fid_str_ += "C"; if (fm1_) fid_str_ += "L"; if (fp1_) fid_str_ += "R"; if (fprev_) fid_str_ += "P"; } // do a log transform on the length (of a sentence, a jump, etc) // this basically means that large distances that are close to each other // are put into the same bin int BinnedLogLength(int len) { int res = static_cast<int>(log(len+1) / log(1.3)); if (res > 16) res = 16; return res; } // <0>=jump size <1>=jump_dir <2>=flen, <3>=elen, <4>=f0, <5>=f-1, <6>=f+1, <7>=fprev typedef boost::tuple<short, char, short, short, WordID, WordID, WordID, WordID> NewJumpFeatureKey; struct KeyHash : unary_function<NewJumpFeatureKey, size_t> { size_t operator()(const NewJumpFeatureKey& k) const { size_t h = 0x37473DEF321; boost::hash_combine(h, k.get<0>()); boost::hash_combine(h, k.get<1>()); boost::hash_combine(h, k.get<2>()); boost::hash_combine(h, k.get<3>()); boost::hash_combine(h, k.get<4>()); boost::hash_combine(h, k.get<5>()); boost::hash_combine(h, k.get<6>()); boost::hash_combine(h, k.get<7>()); return h; } }; void NewJump::FireFeature(const SentenceMetadata& smeta, const int prev_src_index, const int cur_src_index, SparseVector<double>* features) const { const int id = smeta.GetSentenceID(); const int src_len = smeta.GetSourceLength(); const int raw_jump = cur_src_index - prev_src_index; short jump_magnitude = raw_jump; char jtype = 0; if (raw_jump > 0) { jtype = 'R'; } // Right else if (raw_jump == 0) { jtype = 'S'; } // Stay else { jtype = 'L'; jump_magnitude = raw_jump * -1; } // Left int effective_src_len = src_len; int effective_trg_len = smeta.GetTargetLength(); if (use_binned_log_lengths_) { jump_magnitude = BinnedLogLength(jump_magnitude); effective_src_len = BinnedLogLength(src_len); effective_trg_len = BinnedLogLength(effective_trg_len); } NewJumpFeatureKey key(jump_magnitude,jtype,0,0,0,0,0); using boost::get; if (flen_) get<2>(key) = effective_src_len; if (elen_) get<3>(key) = effective_trg_len; if (f0_) get<4>(key) = GetSourceWord(id, cur_src_index); if (fm1_) get<5>(key) = GetSourceWord(id, cur_src_index - 1); if (fp1_) get<6>(key) = GetSourceWord(id, cur_src_index + 1); if (fprev_) get<7>(key) = GetSourceWord(id, prev_src_index); static std::tr1::unordered_map<NewJumpFeatureKey, int, KeyHash> fids; int& fid = fids[key]; if (!fid) { ostringstream os; os << fid_str_ << ':' << jtype << jump_magnitude; if (flen_) os << ':' << get<2>(key); if (elen_) os << ':' << get<3>(key); if (f0_) os << ':' << TD::Convert(get<4>(key)); if (fm1_) os << ':' << TD::Convert(get<5>(key)); if (fp1_) os << ':' << TD::Convert(get<6>(key)); if (fprev_) os << ':' << TD::Convert(get<7>(key)); fid = FD::Convert(os.str()); } features->set_value(fid, 1.0); } void NewJump::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const vector<const void*>& ant_states, SparseVector<double>* features, SparseVector<double>* /* estimated_features */, void* state) const { unsigned char& dpstate = *((unsigned char*)state); // IMPORTANT: this only fires on non-Null transitions! const int flen = smeta.GetSourceLength(); if (edge.Arity() == 0) { dpstate = static_cast<unsigned int>(edge.i_); if (edge.prev_i_ == 0) { // first target word in sentence if (edge.i_ >= 0) { // generated from non-Null token? FireFeature(smeta, -1, // previous src = beginning of sentence index edge.i_, // current src features); } } else if (edge.prev_i_ == smeta.GetTargetLength() - 1) { // last word if (edge.i_ >= 0) { // generated from non-Null token? FireFeature(smeta, edge.i_, // previous src = last word position flen, // current src features); } } } else if (edge.Arity() == 1) { dpstate = *((unsigned char*)ant_states[0]); } else if (edge.Arity() == 2) { int left_index = *((unsigned char*)ant_states[0]); int right_index = *((unsigned char*)ant_states[1]); if (right_index == -1) dpstate = static_cast<unsigned int>(left_index); else dpstate = static_cast<unsigned int>(right_index); if (left_index != kNULL_i && right_index != kNULL_i) { FireFeature(smeta, left_index, // previous src index right_index, // current src index features); } } else { assert(!"something really unexpected is happening"); } } SourceBigram::SourceBigram(const std::string& param) : FeatureFunction(sizeof(WordID) + sizeof(int)) { fid_str_ = "SB:"; if (param.size() > 0) { vector<string> argv; int argc = SplitOnWhitespace(param, &argv); if (argc != 2) { cerr << "SourceBigram [FEATURE_NAME_PREFIX PATH]\n"; abort(); } fid_str_ = argv[0] + ":"; lexmap_.reset(new FactoredLexiconHelper(argv[1], "*")); } else { lexmap_.reset(new FactoredLexiconHelper); } } void SourceBigram::PrepareForInput(const SentenceMetadata& smeta) { lexmap_->PrepareForInput(smeta); } void SourceBigram::FinalTraversalFeatures(const void* context, SparseVector<double>* features) const { WordID left = *static_cast<const WordID*>(context); int left_wc = *(static_cast<const int*>(context) + 1); if (left_wc == 1) FireFeature(-1, left, features); FireFeature(left, -1, features); } void SourceBigram::FireFeature(WordID left, WordID right, SparseVector<double>* features) const { int& fid = fmap_[left][right]; // TODO important important !!! escape strings !!! if (!fid) { ostringstream os; os << fid_str_; if (left < 0) { os << "BOS"; } else { os << TD::Convert(left); } os << '_'; if (right < 0) { os << "EOS"; } else { os << TD::Convert(right); } fid = FD::Convert(os.str()); if (fid == 0) fid = -1; } if (fid > 0) features->set_value(fid, 1.0); } void SourceBigram::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector<const void*>& ant_contexts, SparseVector<double>* features, SparseVector<double>* /* estimated_features */, void* context) const { WordID& out_context = *static_cast<WordID*>(context); int& out_word_count = *(static_cast<int*>(context) + 1); const int arity = edge.Arity(); if (arity == 0) { out_context = lexmap_->SourceWordAtPosition(edge.i_); out_word_count = edge.rule_->EWords(); assert(out_word_count == 1); // this is only defined for lex translation! // revisit this if you want to translate into null words } else if (arity == 2) { WordID left = *static_cast<const WordID*>(ant_contexts[0]); WordID right = *static_cast<const WordID*>(ant_contexts[1]); int left_wc = *(static_cast<const int*>(ant_contexts[0]) + 1); int right_wc = *(static_cast<const int*>(ant_contexts[0]) + 1); if (left_wc == 1 && right_wc == 1) FireFeature(-1, left, features); FireFeature(left, right, features); out_word_count = left_wc + right_wc; out_context = right; } } LexicalTranslationTrigger::LexicalTranslationTrigger(const std::string& param) : FeatureFunction(0) { if (param.empty()) { cerr << "LexicalTranslationTrigger requires a parameter (file containing triggers)!\n"; } else { ReadFile rf(param); istream& in = *rf.stream(); string line; while(in) { getline(in, line); if (!in) continue; vector<WordID> v; TD::ConvertSentence(line, &v); triggers_.push_back(v); } } } void LexicalTranslationTrigger::FireFeature(WordID trigger, WordID src, WordID trg, SparseVector<double>* features) const { int& fid = fmap_[trigger][src][trg]; if (!fid) { ostringstream os; os << "T:" << TD::Convert(trigger) << ':' << TD::Convert(src) << '_' << TD::Convert(trg); fid = FD::Convert(os.str()); } features->set_value(fid, 1.0); int &tfid = target_fmap_[trigger][trg]; if (!tfid) { ostringstream os; os << "TT:" << TD::Convert(trigger) << ':' << TD::Convert(trg); tfid = FD::Convert(os.str()); } features->set_value(tfid, 1.0); } void LexicalTranslationTrigger::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector<const void*>& ant_contexts, SparseVector<double>* features, SparseVector<double>* /* estimated_features */, void* context) const { if (edge.Arity() == 0) { assert(edge.rule_->EWords() == 1); assert(edge.rule_->FWords() == 1); WordID trg = edge.rule_->e()[0]; WordID src = edge.rule_->f()[0]; assert(triggers_.size() > smeta.GetSentenceID()); const vector<WordID>& triggers = triggers_[smeta.GetSentenceID()]; for (int i = 0; i < triggers.size(); ++i) { FireFeature(triggers[i], src, trg, features); } } } BlunsomSynchronousParseHack::BlunsomSynchronousParseHack(const string& param) : FeatureFunction((100 / 8) + 1), fid_(FD::Convert("NotRef")), cur_sent_(-1) { ReadFile rf(param); istream& in = *rf.stream(); int lc = 0; while(in) { string line; getline(in, line); if (!in) break; ++lc; refs_.push_back(vector<WordID>()); TD::ConvertSentence(line, &refs_.back()); } cerr << " Loaded " << lc << " refs\n"; } void BlunsomSynchronousParseHack::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const vector<const void*>& ant_states, SparseVector<double>* features, SparseVector<double>* /* estimated_features */, void* state) const { if (cur_sent_ != smeta.GetSentenceID()) { // assert(smeta.HasReference()); cur_sent_ = smeta.GetSentenceID(); assert(cur_sent_ < refs_.size()); cur_ref_ = &refs_[cur_sent_]; cur_map_.clear(); for (int i = 0; i < cur_ref_->size(); ++i) { vector<WordID> phrase; for (int j = i; j < cur_ref_->size(); ++j) { phrase.push_back((*cur_ref_)[j]); cur_map_[phrase] = i; } } } //cerr << edge.rule_->AsString() << endl; for (int i = 0; i < ant_states.size(); ++i) { if (DoesNotBelong(ant_states[i])) { //cerr << " ant " << i << " does not belong\n"; return; } } vector<vector<WordID> > ants(ant_states.size()); vector<const vector<WordID>* > pants(ant_states.size()); for (int i = 0; i < ant_states.size(); ++i) { AppendAntecedentString(ant_states[i], &ants[i]); //cerr << " ant[" << i << "]: " << ((int)*(static_cast<const unsigned char*>(ant_states[i]))) << " " << TD::GetString(ants[i]) << endl; pants[i] = &ants[i]; } vector<WordID> yield; edge.rule_->ESubstitute(pants, &yield); //cerr << "YIELD: " << TD::GetString(yield) << endl; Vec2Int::iterator it = cur_map_.find(yield); if (it == cur_map_.end()) { features->set_value(fid_, 1); //cerr << " BAD!\n"; return; } SetStateMask(it->second, it->second + yield.size(), state); } IdentityCycleDetector::IdentityCycleDetector(const std::string& param) : FeatureFunction(2) { length_min_ = 3; if (!param.empty()) length_min_ = atoi(param.c_str()); assert(length_min_ >= 0); ostringstream os; os << "IdentityCycle_LenGT" << length_min_; fid_ = FD::Convert(os.str()); } inline bool IsIdentityTranslation(const void* state) { return static_cast<const unsigned char*>(state)[0]; } inline int SourceIndex(const void* state) { unsigned char i = static_cast<const unsigned char*>(state)[1]; if (i == 255) return -1; return i; } void IdentityCycleDetector::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector<const void*>& ant_contexts, SparseVector<double>* features, SparseVector<double>* estimated_features, void* context) const { unsigned char* out_state = static_cast<unsigned char*>(context); unsigned char& out_is_identity = out_state[0]; unsigned char& out_src_index = out_state[1]; if (edge.Arity() == 0) { assert(edge.rule_->EWords() == 1); assert(edge.rule_->FWords() == 1); out_src_index = edge.i_; out_is_identity = false; if (edge.rule_->e_[0] == edge.rule_->f_[0]) { const WordID word = edge.rule_->e_[0]; static map<WordID, bool> big_enough; map<WordID,bool>::iterator it = big_enough_.find(word); if (it == big_enough_.end()) { out_is_identity = big_enough_[word] = strlen(TD::Convert(word)) >= length_min_; } else { out_is_identity = it->second; } } } else if (edge.Arity() == 1) { memcpy(context, ant_contexts[0], 2); } else if (edge.Arity() == 2) { bool left_identity = IsIdentityTranslation(ant_contexts[0]); int left_index = SourceIndex(ant_contexts[0]); bool right_identity = IsIdentityTranslation(ant_contexts[1]); int right_index = SourceIndex(ant_contexts[1]); if ((left_identity && left_index == right_index && !right_identity) || (right_identity && left_index == right_index && !left_identity)) { features->set_value(fid_, 1.0); } out_is_identity = right_identity; out_src_index = right_index; } else { assert("really really bad"); } } InputIndicator::InputIndicator(const std::string& param) {} void InputIndicator::FireFeature(WordID src, SparseVector<double>* features) const { int& fid = fmap_[src]; if (!fid) { static map<WordID, WordID> escape; if (escape.empty()) { escape[TD::Convert("=")] = TD::Convert("__EQ"); escape[TD::Convert(";")] = TD::Convert("__SC"); escape[TD::Convert(",")] = TD::Convert("__CO"); } if (escape.count(src)) src = escape[src]; ostringstream os; os << "S:" << TD::Convert(src); fid = FD::Convert(os.str()); } features->set_value(fid, 1.0); } void InputIndicator::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector<const void*>& ant_contexts, SparseVector<double>* features, SparseVector<double>* estimated_features, void* context) const { const vector<WordID>& fw = edge.rule_->f_; for (int i = 0; i < fw.size(); ++i) { const WordID& f = fw[i]; if (f > 0) FireFeature(f, features); } } WordPairFeatures::WordPairFeatures(const string& param) { vector<string> argv; int argc = SplitOnWhitespace(param, &argv); if (argc != 1) { cerr << "WordPairFeature /path/to/feature_values.table\n"; abort(); } set<WordID> all_srcs; { ReadFile rf(argv[0]); istream& in = *rf.stream(); string buf; while (in) { getline(in, buf); if (buf.empty()) continue; int start = 0; while(start < buf.size() && buf[start] == ' ') ++start; int end = start; while(end < buf.size() && buf[end] != ' ') ++end; const WordID src = TD::Convert(buf.substr(start, end - start)); all_srcs.insert(src); } } if (all_srcs.empty()) { cerr << "WordPairFeature " << param << " loaded empty file!\n"; return; } fkeys_.reserve(all_srcs.size()); copy(all_srcs.begin(), all_srcs.end(), back_inserter(fkeys_)); values_.resize(all_srcs.size()); if (!SILENT) { cerr << "WordPairFeature: " << all_srcs.size() << " sources\n"; } ReadFile rf(argv[0]); istream& in = *rf.stream(); string buf; double val = 0; WordID cur_src = 0; map<WordID, SparseVector<float> > *pv = NULL; const WordID kBARRIER = TD::Convert("|||"); while (in) { getline(in, buf); if (buf.size() == 0) continue; int start = 0; while(start < buf.size() && buf[start] == ' ') ++start; int end = start; while(end < buf.size() && buf[end] != ' ') ++end; const WordID src = TD::Convert(buf.substr(start, end - start)); if (cur_src != src) { cur_src = src; size_t ind = distance(fkeys_.begin(), lower_bound(fkeys_.begin(), fkeys_.end(), cur_src)); pv = &values_[ind]; } end += 1; start = end; while(end < buf.size() && buf[end] != ' ') ++end; WordID x = TD::Convert(buf.substr(start, end - start)); if (x != kBARRIER) { cerr << "1 Format error: " << buf << endl; abort(); } start = end + 1; end = start + 1; while(end < buf.size() && buf[end] != ' ') ++end; WordID trg = TD::Convert(buf.substr(start, end - start)); if (trg == kBARRIER) { cerr << "2 Format error: " << buf << endl; abort(); } start = end + 1; end = start + 1; while(end < buf.size() && buf[end] != ' ') ++end; WordID x2 = TD::Convert(buf.substr(start, end - start)); if (x2 != kBARRIER) { cerr << "3 Format error: " << buf << endl; abort(); } start = end + 1; SparseVector<float>& v = (*pv)[trg]; while(start < buf.size()) { end = start + 1; while(end < buf.size() && buf[end] != '=' && buf[end] != ' ') ++end; if (end == buf.size() || buf[end] != '=') { cerr << "4 Format error: " << buf << endl; abort(); } const int fid = FD::Convert(buf.substr(start, end - start)); start = end + 1; while(start < buf.size() && buf[start] == ' ') ++start; end = start + 1; while(end < buf.size() && buf[end] != ' ') ++end; assert(end > start); if (end < buf.size()) buf[end] = 0; val = strtod(&buf.c_str()[start], NULL); v.set_value(fid, val); start = end + 1; } } } void WordPairFeatures::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector<const void*>& ant_contexts, SparseVector<double>* features, SparseVector<double>* estimated_features, void* context) const { if (edge.Arity() == 0) { assert(edge.rule_->EWords() == 1); assert(edge.rule_->FWords() == 1); const WordID trg = edge.rule_->e()[0]; const WordID src = edge.rule_->f()[0]; size_t ind = distance(fkeys_.begin(), lower_bound(fkeys_.begin(), fkeys_.end(), src)); if (ind == fkeys_.size() || fkeys_[ind] != src) { cerr << "WordPairFeatures no source entries for " << TD::Convert(src) << endl; abort(); } const map<WordID, SparseVector<float> >::const_iterator it = values_[ind].find(trg); // TODO optional strict flag to make sure there are features for all pairs? if (it != values_[ind].end()) (*features) += it->second; } } struct PathFertility { unsigned char null_fertility; unsigned char index_fertility[255]; PathFertility& operator+=(const PathFertility& rhs) { null_fertility += rhs.null_fertility; for (int i = 0; i < 255; ++i) index_fertility[i] += rhs.index_fertility[i]; return *this; } }; Fertility::Fertility(const string& config) : FeatureFunction(sizeof(PathFertility)) {} void Fertility::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector<const void*>& ant_contexts, SparseVector<double>* features, SparseVector<double>* estimated_features, void* context) const { PathFertility& out_fert = *static_cast<PathFertility*>(context); if (edge.Arity() == 0) { if (edge.i_ < 0) { out_fert.null_fertility = 1; } else { out_fert.index_fertility[edge.i_] = 1; } } else if (edge.Arity() == 2) { const PathFertility left = *static_cast<const PathFertility*>(ant_contexts[0]); const PathFertility right = *static_cast<const PathFertility*>(ant_contexts[1]); out_fert += left; out_fert += right; } else if (edge.Arity() == 1) { out_fert += *static_cast<const PathFertility*>(ant_contexts[0]); } }