#include "ff_source_syntax.h" #include <sstream> #include <stack> #include "hg.h" #include "sentence_metadata.h" #include "array2d.h" #include "filelib.h" using namespace std; // implements the source side syntax features described in Blunsom et al. (EMNLP 2008) // source trees must be represented in Penn Treebank format, e.g. // (S (NP John) (VP (V left))) // log transform to make long spans cluster together // but preserve differences inline int SpanSizeTransform(unsigned span_size) { if (!span_size) return 0; return static_cast<int>(log(span_size+1) / log(1.39)) - 1; } struct SourceSyntaxFeaturesImpl { SourceSyntaxFeaturesImpl() {} void InitializeGrids(const string& tree, unsigned src_len) { assert(tree.size() > 0); //fids_cat.clear(); fids_ef.clear(); src_tree.clear(); //fids_cat.resize(src_len, src_len + 1); fids_ef.resize(src_len, src_len + 1); src_tree.resize(src_len, src_len + 1, TD::Convert("XX")); ParseTreeString(tree, src_len); } void ParseTreeString(const string& tree, unsigned src_len) { stack<pair<int, WordID> > stk; // first = i, second = category pair<int, WordID> cur_cat; cur_cat.first = -1; unsigned i = 0; unsigned p = 0; while(p < tree.size()) { const char cur = tree[p]; if (cur == '(') { stk.push(cur_cat); ++p; unsigned k = p + 1; while (k < tree.size() && tree[k] != ' ') { ++k; } cur_cat.first = i; cur_cat.second = TD::Convert(tree.substr(p, k - p)); // cerr << "NT: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; p = k + 1; } else if (cur == ')') { unsigned k = p; while (k < tree.size() && tree[k] == ')') { ++k; } const unsigned num_closes = k - p; for (unsigned ci = 0; ci < num_closes; ++ci) { // cur_cat.second spans from cur_cat.first to i // cerr << TD::Convert(cur_cat.second) << " from " << cur_cat.first << " to " << i << endl; // NOTE: unary rule chains end up being labeled with the top-most category src_tree(cur_cat.first, i) = cur_cat.second; cur_cat = stk.top(); stk.pop(); } p = k; while (p < tree.size() && (tree[p] == ' ' || tree[p] == '\t')) { ++p; } } else if (cur == ' ' || cur == '\t') { cerr << "Unexpected whitespace in: " << tree << endl; abort(); } else { // terminal symbol unsigned k = p + 1; do { while (k < tree.size() && tree[k] != ')' && tree[k] != ' ') { ++k; } // cerr << "TERM: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; ++i; assert(i <= src_len); while (k < tree.size() && tree[k] == ' ') { ++k; } p = k; } while (p < tree.size() && tree[p] != ')'); } } // cerr << "i=" << i << " src_len=" << src_len << endl; assert(i == src_len); // make sure tree specified in src_tree is // the same length as the source sentence } WordID FireFeatures(const TRule& rule, const int i, const int j, const WordID* ants, SparseVector<double>* feats) { //cerr << "fire features: " << rule.AsString() << " for " << i << "," << j << endl; const WordID lhs = src_tree(i,j); //int& fid_cat = fids_cat(i,j); int& fid_ef = fids_ef(i,j)[&rule]; if (fid_ef <= 0) { ostringstream os; //ostringstream os2; os << "SYN:" << TD::Convert(lhs); //os2 << "SYN:" << TD::Convert(lhs) << '_' << SpanSizeTransform(j - i); //fid_cat = FD::Convert(os2.str()); os << ':'; unsigned ntc = 0; for (unsigned k = 0; k < rule.f_.size(); ++k) { if (k > 0) os << '_'; int fj = rule.f_[k]; if (fj <= 0) { os << '[' << TD::Convert(ants[ntc++]) << ']'; } else { os << TD::Convert(fj); } } os << ':'; for (unsigned k = 0; k < rule.e_.size(); ++k) { const int ei = rule.e_[k]; if (k > 0) os << '_'; if (ei <= 0) os << '[' << (1-ei) << ']'; else os << TD::Convert(ei); } fid_ef = FD::Convert(os.str()); } //if (fid_cat > 0) // feats->set_value(fid_cat, 1.0); if (fid_ef > 0) feats->set_value(fid_ef, 1.0); return lhs; } Array2D<WordID> src_tree; // src_tree(i,j) NT = type // mutable Array2D<int> fids_cat; // this tends to overfit baddly mutable Array2D<map<const TRule*, int> > fids_ef; // fires for fully lexicalized }; SourceSyntaxFeatures::SourceSyntaxFeatures(const string& param) : FeatureFunction(sizeof(WordID)) { impl = new SourceSyntaxFeaturesImpl; } SourceSyntaxFeatures::~SourceSyntaxFeatures() { delete impl; impl = NULL; } void SourceSyntaxFeatures::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const vector<const void*>& ant_contexts, SparseVector<double>* features, SparseVector<double>* estimated_features, void* context) const { WordID ants[8]; for (unsigned i = 0; i < ant_contexts.size(); ++i) ants[i] = *static_cast<const WordID*>(ant_contexts[i]); *static_cast<WordID*>(context) = impl->FireFeatures(*edge.rule_, edge.i_, edge.j_, ants, features); } void SourceSyntaxFeatures::PrepareForInput(const SentenceMetadata& smeta) { impl->InitializeGrids(smeta.GetSGMLValue("src_tree"), smeta.GetSourceLength()); } struct SourceSpanSizeFeaturesImpl { SourceSpanSizeFeaturesImpl() {} void InitializeGrids(unsigned src_len) { fids.clear(); fids.resize(src_len, src_len + 1); } int FireFeatures(const TRule& rule, const int i, const int j, const WordID* ants, SparseVector<double>* feats) { if (rule.Arity() > 0) { int& fid = fids(i,j)[&rule]; if (fid <= 0) { ostringstream os; os << "SSS:"; unsigned ntc = 0; for (unsigned k = 0; k < rule.f_.size(); ++k) { if (k > 0) os << '_'; int fj = rule.f_[k]; if (fj <= 0) { os << '[' << TD::Convert(-fj) << ants[ntc++] << ']'; } else { os << TD::Convert(fj); } } os << ':'; for (unsigned k = 0; k < rule.e_.size(); ++k) { const int ei = rule.e_[k]; if (k > 0) os << '_'; if (ei <= 0) os << '[' << (1-ei) << ']'; else os << TD::Convert(ei); } fid = FD::Convert(os.str()); } if (fid > 0) feats->set_value(fid, 1.0); } return SpanSizeTransform(j - i); } mutable Array2D<map<const TRule*, int> > fids; }; SourceSpanSizeFeatures::SourceSpanSizeFeatures(const string& param) : FeatureFunction(sizeof(char)) { impl = new SourceSpanSizeFeaturesImpl; } SourceSpanSizeFeatures::~SourceSpanSizeFeatures() { delete impl; impl = NULL; } void SourceSpanSizeFeatures::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const vector<const void*>& ant_contexts, SparseVector<double>* features, SparseVector<double>* estimated_features, void* context) const { int ants[8]; for (unsigned i = 0; i < ant_contexts.size(); ++i) ants[i] = *static_cast<const char*>(ant_contexts[i]); *static_cast<char*>(context) = impl->FireFeatures(*edge.rule_, edge.i_, edge.j_, ants, features); } void SourceSpanSizeFeatures::PrepareForInput(const SentenceMetadata& smeta) { impl->InitializeGrids(smeta.GetSourceLength()); }