#include "ff_csplit.h" #include <set> #include <cstring> #include "klm/lm/model.hh" #include "sentence_metadata.h" #include "lattice.h" #include "tdict.h" #include "freqdict.h" #include "filelib.h" #include "stringlib.h" #include "tdict.h" using namespace std; struct BasicCSplitFeaturesImpl { BasicCSplitFeaturesImpl(const string& param) : word_count_(FD::Convert("WordCount")), letters_sq_(FD::Convert("LettersSq")), letters_sqrt_(FD::Convert("LettersSqrt")), in_dict_(FD::Convert("InDict")), in_dict_sub_word_(FD::Convert("InDictSubWord")), short_(FD::Convert("Short")), long_(FD::Convert("Long")), oov_(FD::Convert("OOV")), oov_sub_word_(FD::Convert("OOVSubWord")), short_range_(FD::Convert("ShortRange")), high_freq_(FD::Convert("HighFreq")), med_freq_(FD::Convert("MedFreq")), freq_(FD::Convert("Freq")), fl1_(FD::Convert("FreqLen1")), fl2_(FD::Convert("FreqLen2")), bad_(FD::Convert("Bad")) { vector<string> argv; int argc = SplitOnWhitespace(param, &argv); if (argc != 1 && argc != 2) { cerr << "Expected: freqdict.txt [badwords.txt]\n"; abort(); } freq_dict_.Load(argv[0]); if (argc == 2) { ReadFile rf(argv[1]); istream& in = *rf.stream(); while(in) { string badword; in >> badword; if (badword.empty()) continue; bad_words_.insert(TD::Convert(badword)); } } } void TraversalFeaturesImpl(const Hypergraph::Edge& edge, const int src_word_size, SparseVector<double>* features) const; const int word_count_; const int letters_sq_; const int letters_sqrt_; const int in_dict_; const int in_dict_sub_word_; const int short_; const int long_; const int oov_; const int oov_sub_word_; const int short_range_; const int high_freq_; const int med_freq_; const int freq_; const int fl1_; const int fl2_; const int bad_; FreqDict freq_dict_; set<WordID> bad_words_; }; BasicCSplitFeatures::BasicCSplitFeatures(const string& param) : pimpl_(new BasicCSplitFeaturesImpl(param)) {} void BasicCSplitFeaturesImpl::TraversalFeaturesImpl( const Hypergraph::Edge& edge, const int src_word_length, SparseVector<double>* features) const { const bool subword = (edge.i_ > 0) || (edge.j_ < src_word_length); features->set_value(word_count_, 1.0); features->set_value(letters_sq_, (edge.j_ - edge.i_) * (edge.j_ - edge.i_)); features->set_value(letters_sqrt_, sqrt(edge.j_ - edge.i_)); const WordID word = edge.rule_->e_[1]; const char* sword = TD::Convert(word); const int len = strlen(sword); int cur = 0; int chars = 0; while(cur < len) { cur += UTF8Len(sword[cur]); ++chars; } // these are corrections that attempt to make chars // more like a phoneme count than a letter count, they // are only really meaningful for german and should // probably be gotten rid of bool has_sch = strstr(sword, "sch"); bool has_ch = (!has_sch && strstr(sword, "ch")); bool has_ie = strstr(sword, "ie"); bool has_zw = strstr(sword, "zw"); if (has_sch) chars -= 2; if (has_ch) --chars; if (has_ie) --chars; if (has_zw) --chars; float freq = freq_dict_.LookUp(word); if (freq) { features->set_value(freq_, freq); features->set_value(in_dict_, 1.0); if (subword) features->set_value(in_dict_sub_word_, 1.0); } else { features->set_value(oov_, 1.0); if (subword) features->set_value(oov_sub_word_, 1.0); freq = 99.0f; } if (bad_words_.count(word) != 0) features->set_value(bad_, 1.0); if (chars < 5) features->set_value(short_, 1.0); if (chars > 10) features->set_value(long_, 1.0); if (freq < 7.0f) features->set_value(high_freq_, 1.0); if (freq > 8.0f && freq < 10.f) features->set_value(med_freq_, 1.0); if (freq < 10.0f && chars < 5) features->set_value(short_range_, 1.0); // i don't understand these features, but they really help! features->set_value(fl1_, sqrt(chars * freq)); features->set_value(fl2_, freq / chars); } void BasicCSplitFeatures::TraversalFeaturesImpl( const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector<const void*>& ant_contexts, SparseVector<double>* features, SparseVector<double>* estimated_features, void* out_context) const { (void) smeta; (void) ant_contexts; (void) out_context; (void) estimated_features; if (edge.Arity() == 0) return; if (edge.rule_->EWords() != 1) return; pimpl_->TraversalFeaturesImpl(edge, smeta.GetSourceLattice().size(), features); } namespace { struct CSVMapper : public lm::ngram::EnumerateVocab { CSVMapper(vector<lm::WordIndex>* out) : out_(out), kLM_UNKNOWN_TOKEN(0) { out_->clear(); } void Add(lm::WordIndex index, const StringPiece &str) { const WordID cdec_id = TD::Convert(str.as_string()); if (cdec_id >= out_->size()) out_->resize(cdec_id + 1, kLM_UNKNOWN_TOKEN); (*out_)[cdec_id] = index; } vector<lm::WordIndex>* out_; const lm::WordIndex kLM_UNKNOWN_TOKEN; }; } template<class Model> struct ReverseCharLMCSplitFeatureImpl { ReverseCharLMCSplitFeatureImpl(const string& param) { CSVMapper vm(&cdec2klm_map_); lm::ngram::Config conf; conf.enumerate_vocab = &vm; cerr << "Reading character LM from " << param << endl; ngram_ = new Model(param.c_str(), conf); order_ = ngram_->Order(); kEOS = MapWord(TD::Convert("</s>")); assert(kEOS > 0); } lm::WordIndex MapWord(const WordID w) const { if (w < cdec2klm_map_.size()) return cdec2klm_map_[w]; return 0; } double LeftPhonotacticProb(const Lattice& inword, const int start) { const int end = inword.size(); lm::ngram::State state = ngram_->BeginSentenceState(); int sp = min(end - start, order_ - 1); // cerr << "[" << start << "," << sp << "]\n"; int wi = start + sp - 1; while (sp > 0) { const lm::ngram::State scopy(state); ngram_->Score(scopy, MapWord(inword[wi][0].label), state); --wi; --sp; } const lm::ngram::State scopy(state); const double startprob = ngram_->Score(scopy, kEOS, state); return startprob; } private: Model* ngram_; int order_; vector<lm::WordIndex> cdec2klm_map_; lm::WordIndex kEOS; }; ReverseCharLMCSplitFeature::ReverseCharLMCSplitFeature(const string& param) : pimpl_(new ReverseCharLMCSplitFeatureImpl<lm::ngram::ProbingModel>(param)), fid_(FD::Convert("RevCharLM")) {} void ReverseCharLMCSplitFeature::TraversalFeaturesImpl( const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector<const void*>& ant_contexts, SparseVector<double>* features, SparseVector<double>* estimated_features, void* out_context) const { (void) ant_contexts; (void) estimated_features; (void) out_context; if (edge.Arity() != 1) return; if (edge.rule_->EWords() != 1) return; const double lpp = pimpl_->LeftPhonotacticProb(smeta.GetSourceLattice(), edge.i_); features->set_value(fid_, lpp); }