#ifndef _FF_H_ #define _FF_H_ #define DEBUG_INIT 0 #if DEBUG_INIT # include <iostream> # define DBGINIT(a) do { std::cerr<<a<<"\n"; } while(0) #else # define DBGINIT(a) #endif #include <stdint.h> #include <vector> #include <cstring> #include "fdict.h" #include "hg.h" #include "feature_vector.h" #include "value_array.h" class SentenceMetadata; class FeatureFunction; // see definition below typedef std::vector<WordID> Features; // set of features ids // if you want to develop a new feature, inherit from this class and // override TraversalFeaturesImpl(...). If it's a feature that returns / // depends on context, you may also need to implement // FinalTraversalFeatures(...) class FeatureFunction { public: std::string name_; // set by FF factory using usage() bool debug_; // also set by FF factory checking param for immediate initial "debug" //called after constructor, but before name_ and debug_ have been set virtual void Init() { DBGINIT("default FF::Init name="<<name_); } virtual void init_name_debug(std::string const& n,bool debug) { name_=n; debug_=debug; } bool debug() const { return debug_; } FeatureFunction() : state_size_() {} explicit FeatureFunction(int state_size) : state_size_(state_size) {} virtual ~FeatureFunction(); bool IsStateful() const { return state_size_ > 0; } // override this. not virtual because we want to expose this to factory template for help before creating a FF static std::string usage(bool show_params,bool show_details) { return usage_helper("FIXME_feature_needs_name","[no parameters]","[no documentation yet]",show_params,show_details); } static std::string usage_helper(std::string const& name,std::string const& params,std::string const& details,bool show_params,bool show_details); static Features single_feature(int feat); public: // stateless feature that doesn't depend on source span: override and return true. then your feature can be precomputed over rules. virtual bool rule_feature() const { return false; } // called once, per input, before any feature calls to TraversalFeatures, etc. // used to initialize sentence-specific data structures virtual void PrepareForInput(const SentenceMetadata& smeta); //OVERRIDE THIS: virtual Features features() const { return single_feature(FD::Convert(name_)); } // returns the number of bytes of context that this feature function will // (maximally) use. By default, 0 ("stateless" models in Hiero/Joshua). // NOTE: this value is fixed for the instance of your class, you cannot // use different amounts of memory for different nodes in the forest. this will be read as soon as you create a ModelSet, then fixed forever on inline int NumBytesContext() const { return state_size_; } // Compute the feature values and (if this applies) the estimates of the // feature values when this edge is used incorporated into a larger context inline void TraversalFeatures(const SentenceMetadata& smeta, Hypergraph::Edge& edge, const std::vector<const void*>& ant_contexts, FeatureVector* features, FeatureVector* estimated_features, void* out_state) const { TraversalFeaturesLog(smeta, edge, ant_contexts, features, estimated_features, out_state); // TODO it's easy for careless feature function developers to overwrite // the end of their state and clobber someone else's memory. These bugs // will be horrendously painful to track down. There should be some // optional strict mode that's enforced here that adds some kind of // barrier between the blocks reserved for the residual contexts } // if there's some state left when you transition to the goal state, score // it here. For example, the language model computes the cost of adding // <s> and </s>. protected: virtual void FinalTraversalFeatures(const void* residual_state, FeatureVector* final_features) const; public: //override either this or one of above. virtual void FinalTraversalFeatures(const SentenceMetadata& /* smeta */, Hypergraph::Edge& /* edge */, // so you can log() const void* residual_state, FeatureVector* final_features) const { FinalTraversalFeatures(residual_state,final_features); } protected: // context is a pointer to a buffer of size NumBytesContext() that the // feature function can write its state to. It's up to the feature function // to determine how much space it needs and to determine how to encode its // residual contextual information since it is OPAQUE to all clients outside // of the particular FeatureFunction class. There is one exception: // equality of the contents (i.e., memcmp) is required to determine whether // two states can be combined. // by Log, I mean that the edge is non-const only so you can log to it with INFO_EDGE(edge,msg<<"etc."). most features don't use this so implement the below. it has a different name to allow a default implementation without name hiding when inheriting + overriding just 1. virtual void TraversalFeaturesLog(const SentenceMetadata& smeta, Hypergraph::Edge& edge, // this is writable only so you can use log() const std::vector<const void*>& ant_contexts, FeatureVector* features, FeatureVector* estimated_features, void* context) const { TraversalFeaturesImpl(smeta,edge,ant_contexts,features,estimated_features,context); } // override above or below. virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, Hypergraph::Edge const& edge, const std::vector<const void*>& ant_contexts, FeatureVector* features, FeatureVector* estimated_features, void* context) const; // !!! ONLY call this from subclass *CONSTRUCTORS* !!! void SetStateSize(size_t state_size) { state_size_ = state_size; } int StateSize() const { return state_size_; } private: int state_size_; }; // word penalty feature, for each word on the E side of a rule, // add value_ class WordPenalty : public FeatureFunction { public: Features features() const; WordPenalty(const std::string& param); static std::string usage(bool p,bool d) { return usage_helper("WordPenalty","","number of target words (local feature)",p,d); } bool rule_feature() const { return true; } protected: virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector<const void*>& ant_contexts, FeatureVector* features, FeatureVector* estimated_features, void* context) const; private: const int fid_; const double value_; }; class SourceWordPenalty : public FeatureFunction { public: bool rule_feature() const { return true; } Features features() const; SourceWordPenalty(const std::string& param); static std::string usage(bool p,bool d) { return usage_helper("SourceWordPenalty","","number of source words (local feature, and meaningless except when input has non-constant number of source words, e.g. segmentation/morphology/speech recognition lattice)",p,d); } protected: virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector<const void*>& ant_contexts, FeatureVector* features, FeatureVector* estimated_features, void* context) const; private: const int fid_; const double value_; }; #define DEFAULT_MAX_ARITY 9 #define DEFAULT_MAX_ARITY_STRINGIZE(x) #x #define DEFAULT_MAX_ARITY_STRINGIZE_EVAL(x) DEFAULT_MAX_ARITY_STRINGIZE(x) #define DEFAULT_MAX_ARITY_STR DEFAULT_MAX_ARITY_STRINGIZE_EVAL(DEFAULT_MAX_ARITY) class ArityPenalty : public FeatureFunction { public: bool rule_feature() const { return true; } Features features() const; ArityPenalty(const std::string& param); static std::string usage(bool p,bool d) { return usage_helper("ArityPenalty","[MaxArity(default " DEFAULT_MAX_ARITY_STR ")]","Indicator feature Arity_N=1 for rule of arity N (local feature). 0<=N<=MaxArity(default " DEFAULT_MAX_ARITY_STR ")",p,d); } protected: virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector<const void*>& ant_contexts, FeatureVector* features, FeatureVector* estimated_features, void* context) const; private: std::vector<WordID> fids_; const double value_; }; void show_features(Features const& features,DenseWeightVector const& weights,std::ostream &out,std::ostream &warn,bool warn_zero_wt=true); //show features and weights template <class FFp> Features all_features(std::vector<FFp> const& models_,DenseWeightVector &weights_,std::ostream *warn=0,bool warn_fid_0=false) { using namespace std; Features ffs; #define WARNFF(x) do { if (warn) { *warn << "WARNING: "<< x << endl; } } while(0) typedef map<WordID,string> FFM; FFM ff_from; for (unsigned i=0;i<models_.size();++i) { string const& ffname=models_[i]->name_; Features si=models_[i]->features(); if (si.empty()) { WARNFF(ffname<<" doesn't yet report any feature IDs - either supply feature weight, or use --no_freeze_feature_set, or implement features() method"); } unsigned n0=0; for (unsigned j=0;j<si.size();++j) { WordID fid=si[j]; if (!fid) ++n0; if (fid >= weights_.size()) weights_.resize(fid+1); if (warn_fid_0 || fid) { pair<FFM::iterator,bool> i_new=ff_from.insert(FFM::value_type(fid,ffname)); if (i_new.second) { if (fid) ffs.push_back(fid); else WARNFF("Feature id 0 for "<<ffname<<" (models["<<i<<"]) - probably no weight provided. Don't freeze feature ids to see the name"); } else { WARNFF(ffname<<" (models["<<i<<"]) tried to define feature "<<FD::Convert(fid)<<" already defined earlier by "<<i_new.first->second); } } } if (n0) WARNFF(ffname<<" (models["<<i<<"]) had "<<n0<<" unused features (--no_freeze_feature_set to see them)"); } return ffs; #undef WARNFF } template <class FFp> void show_all_features(std::vector<FFp> const& models_,DenseWeightVector &weights_,std::ostream &out,std::ostream &warn,bool warn_fid_0=true,bool warn_zero_wt=true) { return show_features(all_features(models_,weights_,&warn,warn_fid_0),weights_,out,warn,warn_zero_wt); } typedef ValueArray<uint8_t> FFState; // this is about 10% faster than string. //typedef std::string FFState; //FIXME: only context.data() is required to be contiguous, and it becomes invalid after next string operation. use ValueArray instead? (higher performance perhaps, save a word due to fixed size) typedef std::vector<FFState> FFStates; // this class is a set of FeatureFunctions that can be used to score, rescore, // etc. a (translation?) forest class ModelSet { public: ModelSet() : state_size_(0) {} ModelSet(const std::vector<double>& weights, const std::vector<const FeatureFunction*>& models); // TODO stop stupid copy void SetWeights(const std::vector<double>& w) { weights_ = w; } // sets edge->feature_values_ and edge->edge_prob_ // NOTE: edge must not necessarily be in hg.edges_ but its TAIL nodes // must be. edge features are supposed to be overwritten, not added to (possibly because rule features aren't in ModelSet so need to be left alone void AddFeaturesToEdge(const SentenceMetadata& smeta, const Hypergraph& hg, const FFStates& node_states, Hypergraph::Edge* edge, FFState* residual_context, prob_t* combination_cost_estimate = NULL) const; //this is called INSTEAD of above when result of edge is goal (must be a unary rule - i.e. one variable, but typically it's assumed that there are no target terminals either (e.g. for LM)) void AddFinalFeatures(const FFState& residual_context, Hypergraph::Edge* edge, SentenceMetadata const& smeta) const; // this is called once before any feature functions apply to a hypergraph // it can be used to initialize sentence-specific data structures void PrepareForInput(const SentenceMetadata& smeta); bool empty() const { return models_.empty(); } bool stateless() const { return !state_size_; } Features all_features(std::ostream *warnings=0,bool warn_fid_zero=false); // this will warn about duplicate features as well (one function overwrites the feature of another). also resizes weights_ so it is large enough to hold the (0) weight for the largest reported feature id. since 0 is a NULL feature id, it's never included. if warn_fid_zero, then even the first 0 id is void show_features(std::ostream &out,std::ostream &warn,bool warn_zero_wt=true); private: std::vector<const FeatureFunction*> models_; std::vector<double> weights_; int state_size_; std::vector<int> model_state_pos_; }; #endif