From 0da1f6de1b33bbff5cb99b1938bb07d050479f10 Mon Sep 17 00:00:00 2001 From: Chris Dyer Date: Wed, 14 Dec 2011 21:02:50 -0800 Subject: random incomplete metric stuff, including string subsequence kernel impl --- mteval/ns.cc | 241 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 241 insertions(+) create mode 100644 mteval/ns.cc (limited to 'mteval/ns.cc') diff --git a/mteval/ns.cc b/mteval/ns.cc new file mode 100644 index 00000000..1045a51f --- /dev/null +++ b/mteval/ns.cc @@ -0,0 +1,241 @@ +#include "ns.h" +#include "ns_ter.h" + +#include +#include +#include +#include +#include + +using namespace std; +using boost::shared_ptr; + +map EvaluationMetric::instances_; + +SegmentEvaluator::~SegmentEvaluator() {} +EvaluationMetric::~EvaluationMetric() {} + +struct DefaultSegmentEvaluator : public SegmentEvaluator { + DefaultSegmentEvaluator(const vector >& refs, const EvaluationMetric* em) : refs_(refs), em_(em) {} + void Evaluate(const vector& hyp, SufficientStats* out) const { + em_->ComputeSufficientStatistics(hyp, refs_, out); + } + const vector > refs_; + const EvaluationMetric* em_; +}; + +shared_ptr EvaluationMetric::CreateSegmentEvaluator(const vector >& refs) const { + return shared_ptr(new DefaultSegmentEvaluator(refs, this)); +} + +void EvaluationMetric::ComputeSufficientStatistics(const vector&, + const vector >&, + SufficientStats*) const { + cerr << "Base class ComputeSufficientStatistics should not be called.\n"; + abort(); +} + +enum BleuType { IBM, Koehn, NIST }; +template +struct BleuSegmentEvaluator : public SegmentEvaluator { + BleuSegmentEvaluator(const vector >& refs, const EvaluationMetric* em) : evaluation_metric(em) { + assert(refs.size() > 0); + float tot = 0; + int smallest = 9999999; + for (vector >::const_iterator ci = refs.begin(); + ci != refs.end(); ++ci) { + lengths_.push_back(ci->size()); + tot += lengths_.back(); + if (lengths_.back() < smallest) smallest = lengths_.back(); + CountRef(*ci); + } + if (BrevityType == Koehn) + lengths_[0] = tot / refs.size(); + if (BrevityType == NIST) + lengths_[0] = smallest; + } + + void Evaluate(const vector& hyp, SufficientStats* out) const { + out->fields.resize(N + N + 2); + out->evaluation_metric = evaluation_metric; + for (unsigned i = 0; i < N+N+2; ++i) out->fields[i] = 0; + + ComputeNgramStats(hyp, &out->fields[0], &out->fields[N], true); + float& hyp_len = out->fields[2*N]; + float& ref_len = out->fields[2*N + 1]; + hyp_len = hyp.size(); + ref_len = lengths_[0]; + if (lengths_.size() > 1 && BrevityType == IBM) { + float bestd = 2000000; + float hl = hyp.size(); + float bl = -1; + for (vector::const_iterator ci = lengths_.begin(); ci != lengths_.end(); ++ci) { + if (fabs(*ci - hl) < bestd) { + bestd = fabs(*ci - hl); + bl = *ci; + } + } + ref_len = bl; + } + } + + struct NGramCompare { + int operator() (const vector& a, const vector& b) { + const size_t as = a.size(); + const size_t bs = b.size(); + const size_t s = (as < bs ? as : bs); + for (size_t i = 0; i < s; ++i) { + int d = a[i] - b[i]; + if (d < 0) return true; + if (d > 0) return false; + } + return as < bs; + } + }; + typedef map, pair, NGramCompare> NGramCountMap; + + void CountRef(const vector& ref) { + NGramCountMap tc; + vector ngram(N); + int s = ref.size(); + for (int j=0; j& p = ngrams_[i->first]; + if (p.first < i->second.first) + p = i->second; + } + } + + void ComputeNgramStats(const vector& sent, + float* correct, // N elements reserved + float* hyp, // N elements reserved + bool clip_counts = true) const { + vector ngram(N); + *correct *= 0; + *hyp *= 0; + int s = sent.size(); + for (int j=0; j& p = ngrams_[ngram]; + if(clip_counts){ + if (p.second < p.first) { + ++p.second; + correct[i-1]++; + } + } else { + ++p.second; + correct[i-1]++; + } + // if the 1 gram isn't found, don't try to match don't need to match any 2- 3- .. grams: + if (!p.first) { + for (; i<=k; ++i) + hyp[i-1]++; + } else { + hyp[i-1]++; + } + } + } + } + + const EvaluationMetric* evaluation_metric; + vector lengths_; + mutable NGramCountMap ngrams_; +}; + +template +struct BleuMetric : public EvaluationMetric { + BleuMetric() : EvaluationMetric("IBM_BLEU") {} + float ComputeScore(const SufficientStats& stats) const { + float log_bleu = 0; + int count = 0; + for (int i = 0; i < N; ++i) { + if (stats.fields[i+N] > 0) { + float cor_count = stats.fields[i]; // correct_ngram_hit_counts[i]; + // smooth bleu + if (!cor_count) { cor_count = 0.01; } + float lprec = log(cor_count) - log(stats.fields[i+N]); // log(hyp_ngram_counts[i]); + // if (precs) precs->push_back(exp(lprec)); + log_bleu += lprec; + ++count; + } + } + log_bleu /= count; + float lbp = 0.0; + const float& hyp_len = stats.fields[2*N]; + const float& ref_len = stats.fields[2*N + 1]; + if (hyp_len < ref_len) + lbp = (hyp_len - ref_len) / hyp_len; + log_bleu += lbp; + //if (bp) *bp = exp(lbp); + return exp(log_bleu); + } + shared_ptr CreateSegmentEvaluator(const vector >& refs) const { + return shared_ptr(new BleuSegmentEvaluator(refs, this)); + } +}; + +EvaluationMetric* EvaluationMetric::Instance(const string& metric_id) { + static bool is_first = true; + if (is_first) { + instances_["NULL"] = NULL; + is_first = false; + } + + map::iterator it = instances_.find(metric_id); + if (it == instances_.end()) { + EvaluationMetric* m = NULL; + if (metric_id == "IBM_BLEU") { + m = new BleuMetric<4, IBM>; + } else if (metric_id == "NIST_BLEU") { + m = new BleuMetric<4, NIST>; + } else if (metric_id == "Koehn_BLEU") { + m = new BleuMetric<4, Koehn>; + } else if (metric_id == "TER") { + m = new TERMetric; + } else { + cerr << "Implement please: " << metric_id << endl; + abort(); + } + if (m->MetricId() != metric_id) { + cerr << "Registry error: " << metric_id << " vs. " << m->MetricId() << endl; + abort(); + } + return instances_[metric_id] = m; + } else { + return it->second; + } +} + +SufficientStats::SufficientStats(const string& encoded) { + istringstream is(encoded); + string type; + is >> type; + evaluation_metric = EvaluationMetric::Instance(type); + float val; + while(is >> val) + fields.push_back(val); +} + +void SufficientStats::Encode(string* out) const { + ostringstream os; + if (evaluation_metric) + os << evaluation_metric->MetricId(); + else + os << "NULL"; + for (unsigned i = 0; i < fields.size(); ++i) + os << ' ' << fields[i]; + *out = os.str(); +} + -- cgit v1.2.3 From 2eb3bb96c6f780c477585b33273fc0c0d56c80e4 Mon Sep 17 00:00:00 2001 From: Chris Dyer Date: Tue, 20 Dec 2011 15:51:11 -0500 Subject: new scorer interface is implemented, but not used --- mteval/Makefile.am | 2 +- mteval/ns.cc | 67 ++++++++++++++++++++------ mteval/ns.h | 23 +++++---- mteval/ns_comb.cc | 87 +++++++++++++++++++++++++++++++++ mteval/ns_comb.h | 19 ++++++++ mteval/ns_ext.cc | 130 ++++++++++++++++++++++++++++++++++++++++++++++++++ mteval/ns_ext.h | 21 ++++++++ mteval/ns_ter.cc | 126 ++++++++++-------------------------------------- mteval/ns_ter.h | 1 + mteval/scorer_test.cc | 12 +++-- utils/stringlib.h | 7 +++ 11 files changed, 362 insertions(+), 133 deletions(-) create mode 100644 mteval/ns_comb.cc create mode 100644 mteval/ns_comb.h create mode 100644 mteval/ns_ext.cc create mode 100644 mteval/ns_ext.h (limited to 'mteval/ns.cc') diff --git a/mteval/Makefile.am b/mteval/Makefile.am index 95845090..6679d949 100644 --- a/mteval/Makefile.am +++ b/mteval/Makefile.am @@ -10,7 +10,7 @@ endif noinst_LIBRARIES = libmteval.a -libmteval_a_SOURCES = ter.cc comb_scorer.cc aer_scorer.cc scorer.cc external_scorer.cc +libmteval_a_SOURCES = ter.cc comb_scorer.cc aer_scorer.cc scorer.cc external_scorer.cc ns.cc ns_ter.cc ns_ext.cc ns_comb.cc fast_score_SOURCES = fast_score.cc fast_score_LDADD = libmteval.a $(top_srcdir)/utils/libutils.a -lz diff --git a/mteval/ns.cc b/mteval/ns.cc index 1045a51f..6139757d 100644 --- a/mteval/ns.cc +++ b/mteval/ns.cc @@ -1,5 +1,7 @@ #include "ns.h" #include "ns_ter.h" +#include "ns_ext.h" +#include "ns_comb.h" #include #include @@ -7,6 +9,9 @@ #include #include +#include "tdict.h" +#include "stringlib.h" + using namespace std; using boost::shared_ptr; @@ -19,6 +24,7 @@ struct DefaultSegmentEvaluator : public SegmentEvaluator { DefaultSegmentEvaluator(const vector >& refs, const EvaluationMetric* em) : refs_(refs), em_(em) {} void Evaluate(const vector& hyp, SufficientStats* out) const { em_->ComputeSufficientStatistics(hyp, refs_, out); + out->id_ = em_->MetricId(); } const vector > refs_; const EvaluationMetric* em_; @@ -28,6 +34,11 @@ shared_ptr EvaluationMetric::CreateSegmentEvaluator(const vect return shared_ptr(new DefaultSegmentEvaluator(refs, this)); } +#define MAX_SS_VECTOR_SIZE 50 +unsigned EvaluationMetric::SufficientStatisticsVectorSize() const { + return MAX_SS_VECTOR_SIZE; +} + void EvaluationMetric::ComputeSufficientStatistics(const vector&, const vector >&, SufficientStats*) const { @@ -35,6 +46,12 @@ void EvaluationMetric::ComputeSufficientStatistics(const vector&, abort(); } +string EvaluationMetric::DetailedScore(const SufficientStats& stats) const { + ostringstream os; + os << MetricId() << "=" << ComputeScore(stats); + return os.str(); +} + enum BleuType { IBM, Koehn, NIST }; template struct BleuSegmentEvaluator : public SegmentEvaluator { @@ -57,7 +74,7 @@ struct BleuSegmentEvaluator : public SegmentEvaluator { void Evaluate(const vector& hyp, SufficientStats* out) const { out->fields.resize(N + N + 2); - out->evaluation_metric = evaluation_metric; + out->id_ = evaluation_metric->MetricId(); for (unsigned i = 0; i < N+N+2; ++i) out->fields[i] = 0; ComputeNgramStats(hyp, &out->fields[0], &out->fields[N], true); @@ -157,7 +174,12 @@ struct BleuSegmentEvaluator : public SegmentEvaluator { template struct BleuMetric : public EvaluationMetric { BleuMetric() : EvaluationMetric("IBM_BLEU") {} - float ComputeScore(const SufficientStats& stats) const { + unsigned SufficientStatisticsVectorSize() const { return N*2 + 2; } + shared_ptr CreateSegmentEvaluator(const vector >& refs) const { + return shared_ptr(new BleuSegmentEvaluator(refs, this)); + } + float ComputeBreakdown(const SufficientStats& stats, float* bp, vector* out) const { + if (out) { out->clear(); } float log_bleu = 0; int count = 0; for (int i = 0; i < N; ++i) { @@ -166,7 +188,7 @@ struct BleuMetric : public EvaluationMetric { // smooth bleu if (!cor_count) { cor_count = 0.01; } float lprec = log(cor_count) - log(stats.fields[i+N]); // log(hyp_ngram_counts[i]); - // if (precs) precs->push_back(exp(lprec)); + if (out) out->push_back(exp(lprec)); log_bleu += lprec; ++count; } @@ -178,32 +200,51 @@ struct BleuMetric : public EvaluationMetric { if (hyp_len < ref_len) lbp = (hyp_len - ref_len) / hyp_len; log_bleu += lbp; - //if (bp) *bp = exp(lbp); + if (bp) *bp = exp(lbp); return exp(log_bleu); } - shared_ptr CreateSegmentEvaluator(const vector >& refs) const { - return shared_ptr(new BleuSegmentEvaluator(refs, this)); + string DetailedScore(const SufficientStats& stats) const { + char buf[2000]; + vector precs(N); + float bp; + float bleu = ComputeBreakdown(stats, &bp, &precs); + sprintf(buf, "BLEU = %.2f, %.1f|%.1f|%.1f|%.1f (brev=%.3f)", + bleu*100.0, + precs[0]*100.0, + precs[1]*100.0, + precs[2]*100.0, + precs[3]*100.0, + bp); + return buf; + } + float ComputeScore(const SufficientStats& stats) const { + return ComputeBreakdown(stats, NULL, NULL); } }; -EvaluationMetric* EvaluationMetric::Instance(const string& metric_id) { +EvaluationMetric* EvaluationMetric::Instance(const string& imetric_id) { static bool is_first = true; if (is_first) { instances_["NULL"] = NULL; is_first = false; } + const string metric_id = UppercaseString(imetric_id); map::iterator it = instances_.find(metric_id); if (it == instances_.end()) { EvaluationMetric* m = NULL; - if (metric_id == "IBM_BLEU") { + if (metric_id == "IBM_BLEU") { m = new BleuMetric<4, IBM>; } else if (metric_id == "NIST_BLEU") { m = new BleuMetric<4, NIST>; - } else if (metric_id == "Koehn_BLEU") { + } else if (metric_id == "KOEHN_BLEU") { m = new BleuMetric<4, Koehn>; } else if (metric_id == "TER") { m = new TERMetric; + } else if (metric_id == "METEOR") { + m = new ExternalMetric("METEOR", "java -Xmx1536m -jar /Users/cdyer/software/meteor/meteor-1.3.jar - - -mira -lower -t tune -l en"); + } else if (metric_id.find("COMB:") == 0) { + m = new CombinationMetric(metric_id); } else { cerr << "Implement please: " << metric_id << endl; abort(); @@ -220,9 +261,7 @@ EvaluationMetric* EvaluationMetric::Instance(const string& metric_id) { SufficientStats::SufficientStats(const string& encoded) { istringstream is(encoded); - string type; - is >> type; - evaluation_metric = EvaluationMetric::Instance(type); + is >> id_; float val; while(is >> val) fields.push_back(val); @@ -230,8 +269,8 @@ SufficientStats::SufficientStats(const string& encoded) { void SufficientStats::Encode(string* out) const { ostringstream os; - if (evaluation_metric) - os << evaluation_metric->MetricId(); + if (id_.size() > 0) + os << id_; else os << "NULL"; for (unsigned i = 0; i < fields.size(); ++i) diff --git a/mteval/ns.h b/mteval/ns.h index f19b7509..622265db 100644 --- a/mteval/ns.h +++ b/mteval/ns.h @@ -7,18 +7,15 @@ #include #include "wordid.h" -class EvaluationMetric; - class SufficientStats { public: - SufficientStats() : evaluation_metric() {} + SufficientStats() : id_() {} explicit SufficientStats(const std::string& encoded); - explicit SufficientStats(const EvaluationMetric* s) : evaluation_metric(s) {} - SufficientStats(const EvaluationMetric* s, const std::vector& f) : - evaluation_metric(s), fields(f) {} + SufficientStats(const std::string& mid, const std::vector& f) : + id_(mid), fields(f) {} SufficientStats& operator+=(const SufficientStats& delta) { - if (delta.evaluation_metric) evaluation_metric = delta.evaluation_metric; + if (id_.empty() && delta.id_.size()) id_ = delta.id_; if (fields.size() != delta.fields.size()) fields.resize(std::max(fields.size(), delta.fields.size())); for (unsigned i = 0; i < delta.fields.size(); ++i) @@ -26,7 +23,7 @@ class SufficientStats { return *this; } SufficientStats& operator-=(const SufficientStats& delta) { - if (delta.evaluation_metric) evaluation_metric = delta.evaluation_metric; + if (id_.empty() && delta.id_.size()) id_ = delta.id_; if (fields.size() != delta.fields.size()) fields.resize(std::max(fields.size(), delta.fields.size())); for (unsigned i = 0; i < delta.fields.size(); ++i) @@ -53,7 +50,7 @@ class SufficientStats { } void Encode(std::string* out) const; - const EvaluationMetric* evaluation_metric; + std::string id_; std::vector fields; }; @@ -73,13 +70,13 @@ struct SegmentEvaluator { }; // Instructions for implementing a new metric -// Override MetricId() and give the metric a unique string name (no spaces) // To Instance(), add something that creates the metric +// Implement ComputeScore(const SufficientStats& stats) const; // Implement ONE of the following: // 1) void ComputeSufficientStatistics(const std::vector >& refs, SufficientStats* out) const; // 2) a new SegmentEvaluator class AND CreateSegmentEvaluator(const std::vector >& refs) const; -// The later (#2) is only used when it is necessary to precompute per-segment data from a set of refs -// Implement ComputeScore(const SufficientStats& stats) const; +// [The later (#2) is only used when it is necessary to precompute per-segment data from a set of refs] +// OPTIONAL: Override SufficientStatisticsVectorSize() if it is easy to do so class EvaluationMetric { public: static EvaluationMetric* Instance(const std::string& metric_id = "IBM_BLEU"); @@ -91,7 +88,9 @@ class EvaluationMetric { public: const std::string& MetricId() const { return name_; } + virtual unsigned SufficientStatisticsVectorSize() const; virtual float ComputeScore(const SufficientStats& stats) const = 0; + virtual std::string DetailedScore(const SufficientStats& stats) const; virtual boost::shared_ptr CreateSegmentEvaluator(const std::vector >& refs) const; virtual void ComputeSufficientStatistics(const std::vector& hyp, const std::vector >& refs, diff --git a/mteval/ns_comb.cc b/mteval/ns_comb.cc new file mode 100644 index 00000000..41c634cd --- /dev/null +++ b/mteval/ns_comb.cc @@ -0,0 +1,87 @@ +#include "ns_comb.h" + +#include + +#include "stringlib.h" + +using namespace std; + +// e.g. COMB:IBM_BLEU=0.5;TER=0.5 +CombinationMetric::CombinationMetric(const std::string& cmd) : + EvaluationMetric(cmd), + total_size() { + if (cmd.find("COMB:") != 0 || cmd.size() < 9) { + cerr << "Error in combination metric specifier: " << cmd << endl; + exit(1); + } + string mix = cmd.substr(5); + vector comps; + Tokenize(cmd.substr(5), ';', &comps); + if(comps.size() < 2) { + cerr << "Error in combination metric specifier: " << cmd << endl; + exit(1); + } + vector cwpairs; + for (unsigned i = 0; i < comps.size(); ++i) { + Tokenize(comps[i], '=', &cwpairs); + if (cwpairs.size() != 2) { cerr << "Error in combination metric specifier: " << cmd << endl; exit(1); } + metrics.push_back(EvaluationMetric::Instance(cwpairs[0])); + coeffs.push_back(atof(cwpairs[1].c_str())); + offsets.push_back(total_size); + total_size += metrics.back()->SufficientStatisticsVectorSize(); + cerr << (i > 0 ? " + " : "( ") << coeffs.back() << " * " << cwpairs[0]; + } + cerr << " )\n"; +} + +struct CombinationSegmentEvaluator : public SegmentEvaluator { + CombinationSegmentEvaluator(const string& id, + const vector >& refs, + const vector& metrics, + const vector& offsets, + const unsigned ts) : id_(id), offsets_(offsets), total_size_(ts), component_evaluators_(metrics.size()) { + for (unsigned i = 0; i < metrics.size(); ++i) + component_evaluators_[i] = metrics[i]->CreateSegmentEvaluator(refs); + } + virtual void Evaluate(const std::vector& hyp, SufficientStats* out) const { + out->id_ = id_; + out->fields.resize(total_size_); + for (unsigned i = 0; i < component_evaluators_.size(); ++i) { + SufficientStats t; + component_evaluators_[i]->Evaluate(hyp, &t); + for (unsigned j = 0; j < t.fields.size(); ++j) { + unsigned op = j + offsets_[i]; + assert(op < out->fields.size()); + out->fields[op] = t[j]; + } + } + } + const string& id_; + const vector& offsets_; + const unsigned total_size_; + vector > component_evaluators_; +}; + +boost::shared_ptr CombinationMetric::CreateSegmentEvaluator(const std::vector >& refs) const { + boost::shared_ptr res; + res.reset(new CombinationSegmentEvaluator(MetricId(), refs, metrics, offsets, total_size)); + return res; +} + +float CombinationMetric::ComputeScore(const SufficientStats& stats) const { + float tot = 0; + for (unsigned i = 0; i < metrics.size(); ++i) { + SufficientStats t; + unsigned next = total_size; + if (i + 1 < offsets.size()) next = offsets[i+1]; + for (unsigned j = offsets[i]; j < next; ++j) + t.fields.push_back(stats[j]); + tot += metrics[i]->ComputeScore(t) * coeffs[i]; + } + return tot; +} + +unsigned CombinationMetric::SufficientStatisticsVectorSize() const { + return total_size; +} + diff --git a/mteval/ns_comb.h b/mteval/ns_comb.h new file mode 100644 index 00000000..140e7e6a --- /dev/null +++ b/mteval/ns_comb.h @@ -0,0 +1,19 @@ +#ifndef _NS_COMB_H_ +#define _NS_COMB_H_ + +#include "ns.h" + +class CombinationMetric : public EvaluationMetric { + public: + CombinationMetric(const std::string& cmd); + virtual boost::shared_ptr CreateSegmentEvaluator(const std::vector >& refs) const; + virtual float ComputeScore(const SufficientStats& stats) const; + virtual unsigned SufficientStatisticsVectorSize() const; + private: + std::vector metrics; + std::vector coeffs; + std::vector offsets; + unsigned total_size; +}; + +#endif diff --git a/mteval/ns_ext.cc b/mteval/ns_ext.cc new file mode 100644 index 00000000..956708af --- /dev/null +++ b/mteval/ns_ext.cc @@ -0,0 +1,130 @@ +#include "ns_ext.h" + +#include // popen +#include +#include +#include +#include +#include +#include + +#include "stringlib.h" +#include "tdict.h" + +using namespace std; + +struct NScoreServer { + NScoreServer(const std::string& cmd); + ~NScoreServer(); + + float ComputeScore(const std::vector& fields); + void Evaluate(const std::vector >& refs, const std::vector& hyp, std::vector* fields); + + private: + void RequestResponse(const std::string& request, std::string* response); + int p2c[2]; + int c2p[2]; +}; + +NScoreServer::NScoreServer(const string& cmd) { + cerr << "Invoking " << cmd << " ..." << endl; + if (pipe(p2c) < 0) { perror("pipe"); exit(1); } + if (pipe(c2p) < 0) { perror("pipe"); exit(1); } + pid_t cpid = fork(); + if (cpid < 0) { perror("fork"); exit(1); } + if (cpid == 0) { // child + close(p2c[1]); + close(c2p[0]); + dup2(p2c[0], 0); + close(p2c[0]); + dup2(c2p[1], 1); + close(c2p[1]); + cerr << "Exec'ing from child " << cmd << endl; + vector vargs; + SplitOnWhitespace(cmd, &vargs); + const char** cargv = static_cast(malloc(sizeof(const char*) * vargs.size())); + for (unsigned i = 1; i < vargs.size(); ++i) cargv[i-1] = vargs[i].c_str(); + cargv[vargs.size() - 1] = NULL; + execvp(vargs[0].c_str(), (char* const*)cargv); + } else { // parent + close(c2p[1]); + close(p2c[0]); + } + string dummy; + RequestResponse("SCORE ||| Reference initialization string . ||| Testing initialization string .", &dummy); + assert(dummy.size() > 0); + cerr << "Connection established.\n"; +} + +NScoreServer::~NScoreServer() { + // TODO close stuff, join stuff +} + +float NScoreServer::ComputeScore(const vector& fields) { + ostringstream os; + os << "EVAL |||"; + for (unsigned i = 0; i < fields.size(); ++i) + os << ' ' << fields[i]; + string sres; + RequestResponse(os.str(), &sres); + return strtod(sres.c_str(), NULL); +} + +void NScoreServer::Evaluate(const vector >& refs, const vector& hyp, vector* fields) { + ostringstream os; + os << "SCORE"; + for (unsigned i = 0; i < refs.size(); ++i) { + os << " |||"; + for (unsigned j = 0; j < refs[i].size(); ++j) { + os << ' ' << TD::Convert(refs[i][j]); + } + } + os << " |||"; + for (unsigned i = 0; i < hyp.size(); ++i) { + os << ' ' << TD::Convert(hyp[i]); + } + string sres; + RequestResponse(os.str(), &sres); + istringstream is(sres); + float val; + fields->clear(); + while(is >> val) + fields->push_back(val); +} + +#define MAX_BUF 16000 + +void NScoreServer::RequestResponse(const string& request, string* response) { +// cerr << "@SERVER: " << request << endl; + string x = request + "\n"; + write(p2c[1], x.c_str(), x.size()); + char buf[MAX_BUF]; + size_t n = read(c2p[0], buf, MAX_BUF); + while (n < MAX_BUF && buf[n-1] != '\n') + n += read(c2p[0], &buf[n], MAX_BUF - n); + + buf[n-1] = 0; + if (n < 2) { + cerr << "Malformed response: " << buf << endl; + } + *response = Trim(buf, " \t\n"); +// cerr << "@RESPONSE: '" << *response << "'\n"; +} + +void ExternalMetric::ComputeSufficientStatistics(const std::vector& hyp, + const std::vector >& refs, + SufficientStats* out) const { + eval_server->Evaluate(refs, hyp, &out->fields); +} + +float ExternalMetric::ComputeScore(const SufficientStats& stats) const { + eval_server->ComputeScore(stats.fields); +} + +ExternalMetric::ExternalMetric(const string& metric_name, const std::string& command) : + EvaluationMetric(metric_name), + eval_server(new NScoreServer(command)) {} + +ExternalMetric::~ExternalMetric() { + delete eval_server; +} diff --git a/mteval/ns_ext.h b/mteval/ns_ext.h new file mode 100644 index 00000000..78badb2e --- /dev/null +++ b/mteval/ns_ext.h @@ -0,0 +1,21 @@ +#ifndef _NS_EXTERNAL_SCORER_H_ +#define _NS_EXTERNAL_SCORER_H_ + +#include "ns.h" + +struct NScoreServer; +class ExternalMetric : public EvaluationMetric { + public: + ExternalMetric(const std::string& metricid, const std::string& command); + ~ExternalMetric(); + + virtual void ComputeSufficientStatistics(const std::vector& hyp, + const std::vector >& refs, + SufficientStats* out) const; + virtual float ComputeScore(const SufficientStats& stats) const; + + protected: + NScoreServer* eval_server; +}; + +#endif diff --git a/mteval/ns_ter.cc b/mteval/ns_ter.cc index 14dc6e49..8c969e58 100644 --- a/mteval/ns_ter.cc +++ b/mteval/ns_ter.cc @@ -1,15 +1,11 @@ #include "ns_ter.h" -#include #include #include #include -#include #include #include -#include #include -#include #include "tdict.h" static const bool ter_use_average_ref_len = true; @@ -25,7 +21,7 @@ static const unsigned kDUMMY_LAST_ENTRY = 5; using namespace std; using namespace std::tr1; -#if 0 +namespace NewScorer { struct COSTS { static const float substitution; @@ -82,7 +78,7 @@ class TERScorerImpl { enum TransType { MATCH, SUBSTITUTION, INSERTION, DELETION }; explicit TERScorerImpl(const vector& ref) : ref_(ref) { - for (int i = 0; i < ref.size(); ++i) + for (unsigned i = 0; i < ref.size(); ++i) rwexists_.insert(ref[i]); } @@ -95,7 +91,7 @@ class TERScorerImpl { } private: - vector ref_; + const vector& ref_; set rwexists_; typedef unordered_map, set, boost::hash > > NgramToIntsMap; @@ -421,68 +417,7 @@ class TERScorerImpl { } }; -class TERScore : public ScoreBase { - friend class TERScorer; - - public: - - TERScore() : stats(0,kDUMMY_LAST_ENTRY) {} - float ComputePartialScore() const { return 0.0;} - float ComputeScore() const { - float edits = static_cast(stats[kINSERTIONS] + stats[kDELETIONS] + stats[kSUBSTITUTIONS] + stats[kSHIFTS]); - return edits / static_cast(stats[kREF_WORDCOUNT]); - } - void ScoreDetails(string* details) const; - void PlusPartialEquals(const Score& rhs, int oracle_e_cover, int oracle_f_cover, int src_len){} - void PlusEquals(const Score& delta, const float scale) { - if (scale==1) - stats += static_cast(delta).stats; - if (scale==-1) - stats -= static_cast(delta).stats; - throw std::runtime_error("TERScore::PlusEquals with scale != +-1"); - } - void PlusEquals(const Score& delta) { - stats += static_cast(delta).stats; - } - - ScoreP GetZero() const { - return ScoreP(new TERScore); - } - ScoreP GetOne() const { - return ScoreP(new TERScore); - } - void Subtract(const Score& rhs, Score* res) const { - static_cast(res)->stats = stats - static_cast(rhs).stats; - } - void Encode(std::string* out) const { - ostringstream os; - os << stats[kINSERTIONS] << ' ' - << stats[kDELETIONS] << ' ' - << stats[kSUBSTITUTIONS] << ' ' - << stats[kSHIFTS] << ' ' - << stats[kREF_WORDCOUNT]; - *out = os.str(); - } - bool IsAdditiveIdentity() const { - for (int i = 0; i < kDUMMY_LAST_ENTRY; ++i) - if (stats[i] != 0) return false; - return true; - } - private: - valarray stats; -}; - -ScoreP TERScorer::ScoreFromString(const std::string& data) { - istringstream is(data); - TERScore* r = new TERScore; - is >> r->stats[TERScore::kINSERTIONS] - >> r->stats[TERScore::kDELETIONS] - >> r->stats[TERScore::kSUBSTITUTIONS] - >> r->stats[TERScore::kSHIFTS] - >> r->stats[TERScore::kREF_WORDCOUNT]; - return ScoreP(r); -} - +#if 0 void TERScore::ScoreDetails(std::string* details) const { char buf[200]; sprintf(buf, "TER = %.2f, %3d|%3d|%3d|%3d (len=%d)", @@ -494,54 +429,43 @@ void TERScore::ScoreDetails(std::string* details) const { stats[kREF_WORDCOUNT]); *details = buf; } +#endif -TERScorer::~TERScorer() { - for (vector::iterator i = impl_.begin(); i != impl_.end(); ++i) - delete *i; -} +} // namespace NewScorer -TERScorer::TERScorer(const vector >& refs) : impl_(refs.size()) { +void TERMetric::ComputeSufficientStatistics(const vector& hyp, + const vector >& refs, + SufficientStats* out) const { + out->fields.resize(kDUMMY_LAST_ENTRY); + float best_score = numeric_limits::max(); + unsigned avg_len = 0; for (int i = 0; i < refs.size(); ++i) - impl_[i] = new TERScorerImpl(refs[i]); -} + avg_len += refs[i].size(); + avg_len /= refs.size(); -ScoreP TERScorer::ScoreCCandidate(const vector& hyp) const { - return ScoreP(); -} - -ScoreP TERScorer::ScoreCandidate(const std::vector& hyp) const { - float best_score = numeric_limits::max(); - TERScore* res = new TERScore; - int avg_len = 0; - for (int i = 0; i < impl_.size(); ++i) - avg_len += impl_[i]->GetRefLength(); - avg_len /= impl_.size(); - for (int i = 0; i < impl_.size(); ++i) { + for (int i = 0; i < refs.size(); ++i) { int subs, ins, dels, shifts; - float score = impl_[i]->Calculate(hyp, &subs, &ins, &dels, &shifts); + NewScorer::TERScorerImpl ter(refs[i]); + float score = ter.Calculate(hyp, &subs, &ins, &dels, &shifts); // cerr << "Component TER cost: " << score << endl; if (score < best_score) { - res->stats[TERScore::kINSERTIONS] = ins; - res->stats[TERScore::kDELETIONS] = dels; - res->stats[TERScore::kSUBSTITUTIONS] = subs; - res->stats[TERScore::kSHIFTS] = shifts; + out->fields[kINSERTIONS] = ins; + out->fields[kDELETIONS] = dels; + out->fields[kSUBSTITUTIONS] = subs; + out->fields[kSHIFTS] = shifts; if (ter_use_average_ref_len) { - res->stats[TERScore::kREF_WORDCOUNT] = avg_len; + out->fields[kREF_WORDCOUNT] = avg_len; } else { - res->stats[TERScore::kREF_WORDCOUNT] = impl_[i]->GetRefLength(); + out->fields[kREF_WORDCOUNT] = refs[i].size(); } best_score = score; } } - return ScoreP(res); } -#endif -void TERMetric::ComputeSufficientStatistics(const vector& hyp, - const vector >& refs, - SufficientStats* out) const { - out->fields.resize(kDUMMY_LAST_ENTRY); +unsigned TERMetric::SufficientStatisticsVectorSize() const { + return kDUMMY_LAST_ENTRY; } float TERMetric::ComputeScore(const SufficientStats& stats) const { diff --git a/mteval/ns_ter.h b/mteval/ns_ter.h index bb90f95e..6c020cfa 100644 --- a/mteval/ns_ter.h +++ b/mteval/ns_ter.h @@ -9,6 +9,7 @@ class TERMetric : public EvaluationMetric { TERMetric() : EvaluationMetric("TER") {} public: + virtual unsigned SufficientStatisticsVectorSize() const; virtual void ComputeSufficientStatistics(const std::vector& hyp, const std::vector >& refs, SufficientStats* out) const; diff --git a/mteval/scorer_test.cc b/mteval/scorer_test.cc index 09da250c..73159557 100644 --- a/mteval/scorer_test.cc +++ b/mteval/scorer_test.cc @@ -205,20 +205,22 @@ TEST_F(ScorerTest, Kernel) { } TEST_F(ScorerTest, NewScoreAPI) { - EvaluationMetric* metric = EvaluationMetric::Instance("IBM_BLEU"); + //EvaluationMetric* metric = EvaluationMetric::Instance("IBM_BLEU"); + //EvaluationMetric* metric = EvaluationMetric::Instance("METEOR"); + EvaluationMetric* metric = EvaluationMetric::Instance("COMB:IBM_BLEU=0.5;TER=-0.5"); boost::shared_ptr e1 = metric->CreateSegmentEvaluator(refs0); boost::shared_ptr e2 = metric->CreateSegmentEvaluator(refs1); SufficientStats stats1; - e1->Evaluate(hyp2, &stats1); + e1->Evaluate(hyp1, &stats1); SufficientStats stats2; - e2->Evaluate(hyp1, &stats2); + e2->Evaluate(hyp2, &stats2); stats1 += stats2; string ss; stats1.Encode(&ss); cerr << "SS: " << ss << endl; cerr << metric->ComputeScore(stats1) << endl; - SufficientStats statse("IBM_BLEU 53 32 18 11 65 63 61 59 65 72"); - cerr << metric->ComputeScore(statse) << endl; + //SufficientStats statse("IBM_BLEU 53 32 18 11 65 63 61 59 65 72"); + //cerr << metric->ComputeScore(statse) << endl; } int main(int argc, char **argv) { diff --git a/utils/stringlib.h b/utils/stringlib.h index cafbdac3..f457e1e4 100644 --- a/utils/stringlib.h +++ b/utils/stringlib.h @@ -125,6 +125,13 @@ inline std::string LowercaseString(const std::string& in) { return res; } +inline std::string UppercaseString(const std::string& in) { + std::string res(in.size(),' '); + for (int i = 0; i < in.size(); ++i) + res[i] = toupper(in[i]); + return res; +} + inline int CountSubstrings(const std::string& str, const std::string& sub) { size_t p = 0; int res = 0; -- cgit v1.2.3 From e4c5e87db2139aa0f8655b063da7d8b5199cb46d Mon Sep 17 00:00:00 2001 From: Chris Dyer Date: Tue, 20 Dec 2011 18:34:14 -0500 Subject: migrate fast_score to the new API --- mteval/Makefile.am | 2 +- mteval/fast_score.cc | 40 +++++++++++++++++++++++----------------- mteval/ns.cc | 5 +++-- mteval/ns_ter.cc | 12 ++++++++++++ mteval/ns_ter.h | 1 + pro-train/dist-pro.pl | 2 +- vest/dist-vest.pl | 2 +- 7 files changed, 42 insertions(+), 22 deletions(-) (limited to 'mteval/ns.cc') diff --git a/mteval/Makefile.am b/mteval/Makefile.am index 6679d949..e7126675 100644 --- a/mteval/Makefile.am +++ b/mteval/Makefile.am @@ -10,7 +10,7 @@ endif noinst_LIBRARIES = libmteval.a -libmteval_a_SOURCES = ter.cc comb_scorer.cc aer_scorer.cc scorer.cc external_scorer.cc ns.cc ns_ter.cc ns_ext.cc ns_comb.cc +libmteval_a_SOURCES = ter.cc comb_scorer.cc aer_scorer.cc scorer.cc external_scorer.cc ns.cc ns_ter.cc ns_ext.cc ns_comb.cc ns_docscorer.cc fast_score_SOURCES = fast_score.cc fast_score_LDADD = libmteval.a $(top_srcdir)/utils/libutils.a -lz diff --git a/mteval/fast_score.cc b/mteval/fast_score.cc index 5ee264a6..a271ccc5 100644 --- a/mteval/fast_score.cc +++ b/mteval/fast_score.cc @@ -4,9 +4,11 @@ #include #include +#include "stringlib.h" #include "filelib.h" #include "tdict.h" -#include "scorer.h" +#include "ns.h" +#include "ns_docscorer.h" using namespace std; namespace po = boost::program_options; @@ -14,8 +16,8 @@ namespace po = boost::program_options; void InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() - ("reference,r",po::value >(), "[REQD] Reference translation(s) (tokenized text file)") - ("loss_function,l",po::value()->default_value("ibm_bleu"), "Scoring metric (ibm_bleu, nist_bleu, koehn_bleu, ter, combi)") + ("reference,r",po::value >(), "[1 or more required] Reference translation(s) in tokenized text files") + ("evaluation_metric,m",po::value()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)") ("in_file,i", po::value()->default_value("-"), "Input file") ("help,h", "Help"); po::options_description dcmdline_options; @@ -35,24 +37,29 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) { int main(int argc, char** argv) { po::variables_map conf; InitCommandLine(argc, argv, &conf); - const string loss_function = conf["loss_function"].as(); - ScoreType type = ScoreTypeFromString(loss_function); - DocScorer ds(type, conf["reference"].as >(), ""); + string loss_function = UppercaseString(conf["evaluation_metric"].as()); + if (loss_function == "COMBI") { + cerr << "WARNING: 'combi' metric is no longer supported, switching to 'COMB:TER=-0.5;IBM_BLEU=0.5'\n"; + loss_function = "COMB:TER=-0.5;IBM_BLEU=0.5"; + } else if (loss_function == "BLEU") { + cerr << "WARNING: 'BLEU' is ambiguous, assuming 'IBM_BLEU'\n"; + loss_function = "IBM_BLEU"; + } + EvaluationMetric* metric = EvaluationMetric::Instance(loss_function); + DocumentScorer ds(metric, conf["reference"].as >()); cerr << "Loaded " << ds.size() << " references for scoring with " << loss_function << endl; ReadFile rf(conf["in_file"].as()); - ScoreP acc; + SufficientStats acc; istream& in = *rf.stream(); int lc = 0; - while(in) { - string line; - getline(in, line); - if (line.empty() && !in) break; + string line; + while(getline(in, line)) { vector sent; TD::ConvertSentence(line, &sent); - ScoreP sentscore = ds[lc]->ScoreCandidate(sent); - if (!acc) { acc = sentscore->GetZero(); } - acc->PlusEquals(*sentscore); + SufficientStats t; + ds[lc]->Evaluate(sent, &t); + acc += t; ++lc; } assert(lc > 0); @@ -63,9 +70,8 @@ int main(int argc, char** argv) { if (lc != ds.size()) cerr << "Fewer sentences in hyp (" << lc << ") than refs (" << ds.size() << "): scoring partial set!\n"; - float score = acc->ComputeScore(); - string details; - acc->ScoreDetails(&details); + float score = metric->ComputeScore(acc); + const string details = metric->DetailedScore(acc); cerr << details << endl; cout << score << endl; return 0; diff --git a/mteval/ns.cc b/mteval/ns.cc index 6139757d..1018319d 100644 --- a/mteval/ns.cc +++ b/mteval/ns.cc @@ -173,7 +173,7 @@ struct BleuSegmentEvaluator : public SegmentEvaluator { template struct BleuMetric : public EvaluationMetric { - BleuMetric() : EvaluationMetric("IBM_BLEU") {} + BleuMetric() : EvaluationMetric(BrevityType == IBM ? "IBM_BLEU" : (BrevityType == Koehn ? "KOEHN_BLEU" : "NIST_BLEU")) {} unsigned SufficientStatisticsVectorSize() const { return N*2 + 2; } shared_ptr CreateSegmentEvaluator(const vector >& refs) const { return shared_ptr(new BleuSegmentEvaluator(refs, this)); @@ -208,7 +208,8 @@ struct BleuMetric : public EvaluationMetric { vector precs(N); float bp; float bleu = ComputeBreakdown(stats, &bp, &precs); - sprintf(buf, "BLEU = %.2f, %.1f|%.1f|%.1f|%.1f (brev=%.3f)", + sprintf(buf, "%s = %.2f, %.1f|%.1f|%.1f|%.1f (brev=%.3f)", + MetricId().c_str(), bleu*100.0, precs[0]*100.0, precs[1]*100.0, diff --git a/mteval/ns_ter.cc b/mteval/ns_ter.cc index 8c969e58..f75acf1d 100644 --- a/mteval/ns_ter.cc +++ b/mteval/ns_ter.cc @@ -473,3 +473,15 @@ float TERMetric::ComputeScore(const SufficientStats& stats) const { return edits / static_cast(stats[kREF_WORDCOUNT]); } +string TERMetric::DetailedScore(const SufficientStats& stats) const { + char buf[200]; + sprintf(buf, "TER = %.2f, %3.f|%3.f|%3.f|%3.f (len=%3.f)", + ComputeScore(stats) * 100.0f, + stats[kINSERTIONS], + stats[kDELETIONS], + stats[kSUBSTITUTIONS], + stats[kSHIFTS], + stats[kREF_WORDCOUNT]); + return buf; +} + diff --git a/mteval/ns_ter.h b/mteval/ns_ter.h index 6c020cfa..3190fc1b 100644 --- a/mteval/ns_ter.h +++ b/mteval/ns_ter.h @@ -10,6 +10,7 @@ class TERMetric : public EvaluationMetric { public: virtual unsigned SufficientStatisticsVectorSize() const; + virtual std::string DetailedScore(const SufficientStats& stats) const; virtual void ComputeSufficientStatistics(const std::vector& hyp, const std::vector >& refs, SufficientStats* out) const; diff --git a/pro-train/dist-pro.pl b/pro-train/dist-pro.pl index 5db053de..ba9cdc06 100755 --- a/pro-train/dist-pro.pl +++ b/pro-train/dist-pro.pl @@ -288,7 +288,7 @@ while (1){ $retries++; } die "Dev set contains $devSize sentences, but we don't have topbest and hypergraphs for all these! Decoder failure? Check $decoderLog\n" if ($devSize != $num_hgs || $devSize != $num_topbest); - my $dec_score = check_output("cat $runFile | $SCORER $refs_comma_sep -l $metric"); + my $dec_score = check_output("cat $runFile | $SCORER $refs_comma_sep -m $metric"); chomp $dec_score; print STDERR "DECODER SCORE: $dec_score\n"; diff --git a/vest/dist-vest.pl b/vest/dist-vest.pl index 11e791c1..c382a972 100755 --- a/vest/dist-vest.pl +++ b/vest/dist-vest.pl @@ -308,7 +308,7 @@ while (1){ $retries++; } die "Dev set contains $devSize sentences, but we don't have topbest and hypergraphs for all these! Decoder failure? Check $decoderLog\n" if ($devSize != $num_hgs || $devSize != $num_topbest); - my $dec_score = check_output("cat $runFile | $SCORER $refs_comma_sep -l $metric"); + my $dec_score = check_output("cat $runFile | $SCORER $refs_comma_sep -m $metric"); chomp $dec_score; print STDERR "DECODER SCORE: $dec_score\n"; -- cgit v1.2.3 From d021894c27ffea13decf4e64e9bee428ffc85013 Mon Sep 17 00:00:00 2001 From: Chris Dyer Date: Tue, 20 Dec 2011 23:37:25 +0000 Subject: new headers --- mteval/ns.cc | 1 + mteval/ns_ter.cc | 1 + 2 files changed, 2 insertions(+) (limited to 'mteval/ns.cc') diff --git a/mteval/ns.cc b/mteval/ns.cc index 1018319d..68c8deaa 100644 --- a/mteval/ns.cc +++ b/mteval/ns.cc @@ -3,6 +3,7 @@ #include "ns_ext.h" #include "ns_comb.h" +#include #include #include #include diff --git a/mteval/ns_ter.cc b/mteval/ns_ter.cc index f75acf1d..91a17f0d 100644 --- a/mteval/ns_ter.cc +++ b/mteval/ns_ter.cc @@ -1,5 +1,6 @@ #include "ns_ter.h" +#include #include #include #include -- cgit v1.2.3 From 481a120564fdb73c8c6833e2102acb533683261c Mon Sep 17 00:00:00 2001 From: Chris Dyer Date: Fri, 27 Jan 2012 02:31:00 -0500 Subject: migrate mert to the new scorer interface --- gi/pf/base_distributions.cc | 241 ++++++++++++++++++++++++++++++++++++++++ gi/pf/base_distributions.h | 261 ++++++++++++++++++++++++++++++++++++++++++++ gi/pf/base_measures.cc | 241 ---------------------------------------- gi/pf/base_measures.h | 247 ----------------------------------------- mteval/ns.cc | 4 + mteval/ns.h | 10 +- vest/ces.cc | 42 +++---- vest/ces.h | 10 +- vest/dist-vest.pl | 4 +- vest/error_surface.cc | 11 +- vest/error_surface.h | 6 +- vest/line_optimizer.cc | 20 ++-- vest/line_optimizer.h | 2 + vest/lo_test.cc | 21 ++-- vest/mr_vest_map.cc | 16 +-- vest/mr_vest_reduce.cc | 34 +++--- 16 files changed, 602 insertions(+), 568 deletions(-) create mode 100644 gi/pf/base_distributions.cc create mode 100644 gi/pf/base_distributions.h delete mode 100644 gi/pf/base_measures.cc delete mode 100644 gi/pf/base_measures.h (limited to 'mteval/ns.cc') diff --git a/gi/pf/base_distributions.cc b/gi/pf/base_distributions.cc new file mode 100644 index 00000000..4b1863fa --- /dev/null +++ b/gi/pf/base_distributions.cc @@ -0,0 +1,241 @@ +#include "base_measures.h" + +#include + +#include "filelib.h" + +using namespace std; + +TableLookupBase::TableLookupBase(const string& fname) { + cerr << "TableLookupBase reading from " << fname << " ..." << endl; + ReadFile rf(fname); + istream& in = *rf.stream(); + string line; + unsigned lc = 0; + const WordID kDIV = TD::Convert("|||"); + vector tmp; + vector le, lf; + TRule x; + x.lhs_ = -TD::Convert("X"); + bool flag = false; + while(getline(in, line)) { + ++lc; + if (lc % 1000000 == 0) { cerr << " [" << lc << ']' << endl; flag = false; } + else if (lc % 25000 == 0) { cerr << '.' << flush; flag = true; } + tmp.clear(); + TD::ConvertSentence(line, &tmp); + x.f_.clear(); + x.e_.clear(); + size_t pos = 0; + int cc = 0; + while(pos < tmp.size()) { + const WordID cur = tmp[pos++]; + if (cur == kDIV) { + ++cc; + } else if (cc == 0) { + x.f_.push_back(cur); + } else if (cc == 1) { + x.e_.push_back(cur); + } else if (cc == 2) { + table[x].logeq(atof(TD::Convert(cur))); + ++cc; + } else { + if (flag) cerr << endl; + cerr << "Bad format in " << lc << ": " << line << endl; abort(); + } + } + if (cc != 3) { + if (flag) cerr << endl; + cerr << "Bad format in " << lc << ": " << line << endl; abort(); + } + } + if (flag) cerr << endl; + cerr << " read " << lc << " entries\n"; +} + +prob_t PhraseConditionalUninformativeUnigramBase::p0(const vector& vsrc, + const vector& vtrg, + int start_src, int start_trg) const { + const int flen = vsrc.size() - start_src; + const int elen = vtrg.size() - start_trg; + prob_t p; + p.logeq(log_poisson(elen, flen + 0.01)); // elen | flen ~Pois(flen + 0.01) + //p.logeq(log_poisson(elen, 1)); // elen | flen ~Pois(flen + 0.01) + for (int i = 0; i < elen; ++i) + p *= u(vtrg[i + start_trg]); // draw e_i ~Uniform + return p; +} + +prob_t PhraseConditionalUninformativeBase::p0(const vector& vsrc, + const vector& vtrg, + int start_src, int start_trg) const { + const int flen = vsrc.size() - start_src; + const int elen = vtrg.size() - start_trg; + prob_t p; + //p.logeq(log_poisson(elen, flen + 0.01)); // elen | flen ~Pois(flen + 0.01) + p.logeq(log_poisson(elen, 1)); // elen | flen ~Pois(flen + 0.01) + for (int i = 0; i < elen; ++i) + p *= kUNIFORM_TARGET; // draw e_i ~Uniform + return p; +} + +void Model1::LoadModel1(const string& fname) { + cerr << "Loading Model 1 parameters from " << fname << " ..." << endl; + ReadFile rf(fname); + istream& in = *rf.stream(); + string line; + unsigned lc = 0; + while(getline(in, line)) { + ++lc; + int cur = 0; + int start = 0; + while(cur < line.size() && line[cur] != ' ') { ++cur; } + assert(cur != line.size()); + line[cur] = 0; + const WordID src = TD::Convert(&line[0]); + ++cur; + start = cur; + while(cur < line.size() && line[cur] != ' ') { ++cur; } + assert(cur != line.size()); + line[cur] = 0; + WordID trg = TD::Convert(&line[start]); + const double logprob = strtod(&line[cur + 1], NULL); + if (src >= ttable.size()) ttable.resize(src + 1); + ttable[src][trg].logeq(logprob); + } + cerr << " read " << lc << " parameters.\n"; +} + +prob_t PhraseConditionalBase::p0(const vector& vsrc, + const vector& vtrg, + int start_src, int start_trg) const { + const int flen = vsrc.size() - start_src; + const int elen = vtrg.size() - start_trg; + prob_t uniform_src_alignment; uniform_src_alignment.logeq(-log(flen + 1)); + prob_t p; + p.logeq(log_poisson(elen, flen + 0.01)); // elen | flen ~Pois(flen + 0.01) + for (int i = 0; i < elen; ++i) { // for each position i in e-RHS + const WordID trg = vtrg[i + start_trg]; + prob_t tp = prob_t::Zero(); + for (int j = -1; j < flen; ++j) { + const WordID src = j < 0 ? 0 : vsrc[j + start_src]; + tp += kM1MIXTURE * model1(src, trg); + tp += kUNIFORM_MIXTURE * kUNIFORM_TARGET; + } + tp *= uniform_src_alignment; // draw a_i ~uniform + p *= tp; // draw e_i ~Model1(f_a_i) / uniform + } + if (p.is_0()) { + cerr << "Zero! " << vsrc << "\nTRG=" << vtrg << endl; + abort(); + } + return p; +} + +prob_t PhraseJointBase::p0(const vector& vsrc, + const vector& vtrg, + int start_src, int start_trg) const { + const int flen = vsrc.size() - start_src; + const int elen = vtrg.size() - start_trg; + prob_t uniform_src_alignment; uniform_src_alignment.logeq(-log(flen + 1)); + prob_t p; + p.logeq(log_poisson(flen, 1.0)); // flen ~Pois(1) + // elen | flen ~Pois(flen + 0.01) + prob_t ptrglen; ptrglen.logeq(log_poisson(elen, flen + 0.01)); + p *= ptrglen; + p *= kUNIFORM_SOURCE.pow(flen); // each f in F ~Uniform + for (int i = 0; i < elen; ++i) { // for each position i in E + const WordID trg = vtrg[i + start_trg]; + prob_t tp = prob_t::Zero(); + for (int j = -1; j < flen; ++j) { + const WordID src = j < 0 ? 0 : vsrc[j + start_src]; + tp += kM1MIXTURE * model1(src, trg); + tp += kUNIFORM_MIXTURE * kUNIFORM_TARGET; + } + tp *= uniform_src_alignment; // draw a_i ~uniform + p *= tp; // draw e_i ~Model1(f_a_i) / uniform + } + if (p.is_0()) { + cerr << "Zero! " << vsrc << "\nTRG=" << vtrg << endl; + abort(); + } + return p; +} + +prob_t PhraseJointBase_BiDir::p0(const vector& vsrc, + const vector& vtrg, + int start_src, int start_trg) const { + const int flen = vsrc.size() - start_src; + const int elen = vtrg.size() - start_trg; + prob_t uniform_src_alignment; uniform_src_alignment.logeq(-log(flen + 1)); + prob_t uniform_trg_alignment; uniform_trg_alignment.logeq(-log(elen + 1)); + + prob_t p1; + p1.logeq(log_poisson(flen, 1.0)); // flen ~Pois(1) + // elen | flen ~Pois(flen + 0.01) + prob_t ptrglen; ptrglen.logeq(log_poisson(elen, flen + 0.01)); + p1 *= ptrglen; + p1 *= kUNIFORM_SOURCE.pow(flen); // each f in F ~Uniform + for (int i = 0; i < elen; ++i) { // for each position i in E + const WordID trg = vtrg[i + start_trg]; + prob_t tp = prob_t::Zero(); + for (int j = -1; j < flen; ++j) { + const WordID src = j < 0 ? 0 : vsrc[j + start_src]; + tp += kM1MIXTURE * model1(src, trg); + tp += kUNIFORM_MIXTURE * kUNIFORM_TARGET; + } + tp *= uniform_src_alignment; // draw a_i ~uniform + p1 *= tp; // draw e_i ~Model1(f_a_i) / uniform + } + if (p1.is_0()) { + cerr << "Zero! " << vsrc << "\nTRG=" << vtrg << endl; + abort(); + } + + prob_t p2; + p2.logeq(log_poisson(elen, 1.0)); // elen ~Pois(1) + // flen | elen ~Pois(flen + 0.01) + prob_t psrclen; psrclen.logeq(log_poisson(flen, elen + 0.01)); + p2 *= psrclen; + p2 *= kUNIFORM_TARGET.pow(elen); // each f in F ~Uniform + for (int i = 0; i < flen; ++i) { // for each position i in E + const WordID src = vsrc[i + start_src]; + prob_t tp = prob_t::Zero(); + for (int j = -1; j < elen; ++j) { + const WordID trg = j < 0 ? 0 : vtrg[j + start_trg]; + tp += kM1MIXTURE * invmodel1(trg, src); + tp += kUNIFORM_MIXTURE * kUNIFORM_SOURCE; + } + tp *= uniform_trg_alignment; // draw a_i ~uniform + p2 *= tp; // draw e_i ~Model1(f_a_i) / uniform + } + if (p2.is_0()) { + cerr << "Zero! " << vsrc << "\nTRG=" << vtrg << endl; + abort(); + } + + static const prob_t kHALF(0.5); + return (p1 + p2) * kHALF; +} + +JumpBase::JumpBase() : p(200) { + for (unsigned src_len = 1; src_len < 200; ++src_len) { + map& cpd = p[src_len]; + int min_jump = 1 - src_len; + int max_jump = src_len; + prob_t z; + for (int j = min_jump; j <= max_jump; ++j) { + prob_t& cp = cpd[j]; + if (j < 0) + cp.logeq(log_poisson(1.5-j, 1)); + else if (j > 0) + cp.logeq(log_poisson(j, 1)); + cp.poweq(0.2); + z += cp; + } + for (int j = min_jump; j <= max_jump; ++j) { + cpd[j] /= z; + } + } +} + diff --git a/gi/pf/base_distributions.h b/gi/pf/base_distributions.h new file mode 100644 index 00000000..a23ac32b --- /dev/null +++ b/gi/pf/base_distributions.h @@ -0,0 +1,261 @@ +#ifndef _BASE_MEASURES_H_ +#define _BASE_MEASURES_H_ + +#include +#include +#include +#include +#include +#include + +#include "unigrams.h" +#include "trule.h" +#include "prob.h" +#include "tdict.h" +#include "sampler.h" + +inline double log_poisson(unsigned x, const double& lambda) { + assert(lambda > 0.0); + return log(lambda) * x - lgamma(x + 1) - lambda; +} + +inline double log_binom_coeff(unsigned n, unsigned k) { + assert(n >= k); + if (n == k) return 0.0; + return lgamma(n + 1) - lgamma(k + 1) - lgamma(n - k + 1); +} + +// http://en.wikipedia.org/wiki/Negative_binomial_distribution +inline double log_negative_binom(unsigned x, unsigned r, double p) { + assert(p > 0.0); + assert(p < 1.0); + return log_binom_coeff(x + r - 1, x) + r * log(1 - p) + x * log(p); +} + +inline std::ostream& operator<<(std::ostream& os, const std::vector& p) { + os << '['; + for (int i = 0; i < p.size(); ++i) + os << (i==0 ? "" : " ") << TD::Convert(p[i]); + return os << ']'; +} + +struct Model1 { + explicit Model1(const std::string& fname) : + kNULL(TD::Convert("")), + kZERO() { + LoadModel1(fname); + } + + void LoadModel1(const std::string& fname); + + // returns prob 0 if src or trg is not found + const prob_t& operator()(WordID src, WordID trg) const { + if (src == 0) src = kNULL; + if (src < ttable.size()) { + const std::map& cpd = ttable[src]; + const std::map::const_iterator it = cpd.find(trg); + if (it != cpd.end()) + return it->second; + } + return kZERO; + } + + const WordID kNULL; + const prob_t kZERO; + std::vector > ttable; +}; + +struct PoissonUniformUninformativeBase { + explicit PoissonUniformUninformativeBase(const unsigned ves) : kUNIFORM(1.0 / ves) {} + prob_t operator()(const TRule& r) const { + prob_t p; p.logeq(log_poisson(r.e_.size(), 1.0)); + prob_t q = kUNIFORM; q.poweq(r.e_.size()); + p *= q; + return p; + } + void Summary() const {} + void ResampleHyperparameters(MT19937*) {} + void Increment(const TRule&) {} + void Decrement(const TRule&) {} + prob_t Likelihood() const { return prob_t::One(); } + const prob_t kUNIFORM; +}; + +struct CompletelyUniformBase { + explicit CompletelyUniformBase(const unsigned ves) : kUNIFORM(1.0 / ves) {} + prob_t operator()(const TRule&) const { + return kUNIFORM; + } + void Summary() const {} + void ResampleHyperparameters(MT19937*) {} + void Increment(const TRule&) {} + void Decrement(const TRule&) {} + prob_t Likelihood() const { return prob_t::One(); } + const prob_t kUNIFORM; +}; + +struct UnigramWordBase { + explicit UnigramWordBase(const std::string& fname) : un(fname) {} + prob_t operator()(const TRule& r) const { + return un(r.e_); + } + const UnigramWordModel un; +}; + +struct RuleHasher { + size_t operator()(const TRule& r) const { + return hash_value(r); + } +}; + +struct TableLookupBase { + TableLookupBase(const std::string& fname); + + prob_t operator()(const TRule& rule) const { + const std::tr1::unordered_map::const_iterator it = table.find(rule); + if (it == table.end()) { + std::cerr << rule << " not found\n"; + abort(); + } + return it->second; + } + + void ResampleHyperparameters(MT19937*) {} + void Increment(const TRule&) {} + void Decrement(const TRule&) {} + prob_t Likelihood() const { return prob_t::One(); } + void Summary() const {} + + std::tr1::unordered_map table; +}; + +struct PhraseConditionalUninformativeBase { + explicit PhraseConditionalUninformativeBase(const unsigned vocab_e_size) : + kUNIFORM_TARGET(1.0 / vocab_e_size) { + assert(vocab_e_size > 0); + } + + // return p0 of rule.e_ | rule.f_ + prob_t operator()(const TRule& rule) const { + return p0(rule.f_, rule.e_, 0, 0); + } + + prob_t p0(const std::vector& vsrc, const std::vector& vtrg, int start_src, int start_trg) const; + + void Summary() const {} + void ResampleHyperparameters(MT19937*) {} + void Increment(const TRule&) {} + void Decrement(const TRule&) {} + prob_t Likelihood() const { return prob_t::One(); } + const prob_t kUNIFORM_TARGET; +}; + +struct PhraseConditionalUninformativeUnigramBase { + explicit PhraseConditionalUninformativeUnigramBase(const std::string& file, const unsigned vocab_e_size) : u(file, vocab_e_size) {} + + // return p0 of rule.e_ | rule.f_ + prob_t operator()(const TRule& rule) const { + return p0(rule.f_, rule.e_, 0, 0); + } + + prob_t p0(const std::vector& vsrc, const std::vector& vtrg, int start_src, int start_trg) const; + + const UnigramModel u; +}; + +struct PhraseConditionalBase { + explicit PhraseConditionalBase(const Model1& m1, const double m1mixture, const unsigned vocab_e_size) : + model1(m1), + kM1MIXTURE(m1mixture), + kUNIFORM_MIXTURE(1.0 - m1mixture), + kUNIFORM_TARGET(1.0 / vocab_e_size) { + assert(m1mixture >= 0.0 && m1mixture <= 1.0); + assert(vocab_e_size > 0); + } + + // return p0 of rule.e_ | rule.f_ + prob_t operator()(const TRule& rule) const { + return p0(rule.f_, rule.e_, 0, 0); + } + + prob_t p0(const std::vector& vsrc, const std::vector& vtrg, int start_src, int start_trg) const; + + const Model1& model1; + const prob_t kM1MIXTURE; // Model 1 mixture component + const prob_t kUNIFORM_MIXTURE; // uniform mixture component + const prob_t kUNIFORM_TARGET; +}; + +struct PhraseJointBase { + explicit PhraseJointBase(const Model1& m1, const double m1mixture, const unsigned vocab_e_size, const unsigned vocab_f_size) : + model1(m1), + kM1MIXTURE(m1mixture), + kUNIFORM_MIXTURE(1.0 - m1mixture), + kUNIFORM_SOURCE(1.0 / vocab_f_size), + kUNIFORM_TARGET(1.0 / vocab_e_size) { + assert(m1mixture >= 0.0 && m1mixture <= 1.0); + assert(vocab_e_size > 0); + } + + // return p0 of rule.e_ , rule.f_ + prob_t operator()(const TRule& rule) const { + return p0(rule.f_, rule.e_, 0, 0); + } + + prob_t p0(const std::vector& vsrc, const std::vector& vtrg, int start_src, int start_trg) const; + + const Model1& model1; + const prob_t kM1MIXTURE; // Model 1 mixture component + const prob_t kUNIFORM_MIXTURE; // uniform mixture component + const prob_t kUNIFORM_SOURCE; + const prob_t kUNIFORM_TARGET; +}; + +struct PhraseJointBase_BiDir { + explicit PhraseJointBase_BiDir(const Model1& m1, + const Model1& im1, + const double m1mixture, + const unsigned vocab_e_size, + const unsigned vocab_f_size) : + model1(m1), + invmodel1(im1), + kM1MIXTURE(m1mixture), + kUNIFORM_MIXTURE(1.0 - m1mixture), + kUNIFORM_SOURCE(1.0 / vocab_f_size), + kUNIFORM_TARGET(1.0 / vocab_e_size) { + assert(m1mixture >= 0.0 && m1mixture <= 1.0); + assert(vocab_e_size > 0); + } + + // return p0 of rule.e_ , rule.f_ + prob_t operator()(const TRule& rule) const { + return p0(rule.f_, rule.e_, 0, 0); + } + + prob_t p0(const std::vector& vsrc, const std::vector& vtrg, int start_src, int start_trg) const; + + const Model1& model1; + const Model1& invmodel1; + const prob_t kM1MIXTURE; // Model 1 mixture component + const prob_t kUNIFORM_MIXTURE; // uniform mixture component + const prob_t kUNIFORM_SOURCE; + const prob_t kUNIFORM_TARGET; +}; + +// base distribution for jump size multinomials +// basically p(0) = 0 and then, p(1) is max, and then +// you drop as you move to the max jump distance +struct JumpBase { + JumpBase(); + + const prob_t& operator()(int jump, unsigned src_len) const { + assert(jump != 0); + const std::map::const_iterator it = p[src_len].find(jump); + assert(it != p[src_len].end()); + return it->second; + } + std::vector > p; +}; + + +#endif diff --git a/gi/pf/base_measures.cc b/gi/pf/base_measures.cc deleted file mode 100644 index 4b1863fa..00000000 --- a/gi/pf/base_measures.cc +++ /dev/null @@ -1,241 +0,0 @@ -#include "base_measures.h" - -#include - -#include "filelib.h" - -using namespace std; - -TableLookupBase::TableLookupBase(const string& fname) { - cerr << "TableLookupBase reading from " << fname << " ..." << endl; - ReadFile rf(fname); - istream& in = *rf.stream(); - string line; - unsigned lc = 0; - const WordID kDIV = TD::Convert("|||"); - vector tmp; - vector le, lf; - TRule x; - x.lhs_ = -TD::Convert("X"); - bool flag = false; - while(getline(in, line)) { - ++lc; - if (lc % 1000000 == 0) { cerr << " [" << lc << ']' << endl; flag = false; } - else if (lc % 25000 == 0) { cerr << '.' << flush; flag = true; } - tmp.clear(); - TD::ConvertSentence(line, &tmp); - x.f_.clear(); - x.e_.clear(); - size_t pos = 0; - int cc = 0; - while(pos < tmp.size()) { - const WordID cur = tmp[pos++]; - if (cur == kDIV) { - ++cc; - } else if (cc == 0) { - x.f_.push_back(cur); - } else if (cc == 1) { - x.e_.push_back(cur); - } else if (cc == 2) { - table[x].logeq(atof(TD::Convert(cur))); - ++cc; - } else { - if (flag) cerr << endl; - cerr << "Bad format in " << lc << ": " << line << endl; abort(); - } - } - if (cc != 3) { - if (flag) cerr << endl; - cerr << "Bad format in " << lc << ": " << line << endl; abort(); - } - } - if (flag) cerr << endl; - cerr << " read " << lc << " entries\n"; -} - -prob_t PhraseConditionalUninformativeUnigramBase::p0(const vector& vsrc, - const vector& vtrg, - int start_src, int start_trg) const { - const int flen = vsrc.size() - start_src; - const int elen = vtrg.size() - start_trg; - prob_t p; - p.logeq(log_poisson(elen, flen + 0.01)); // elen | flen ~Pois(flen + 0.01) - //p.logeq(log_poisson(elen, 1)); // elen | flen ~Pois(flen + 0.01) - for (int i = 0; i < elen; ++i) - p *= u(vtrg[i + start_trg]); // draw e_i ~Uniform - return p; -} - -prob_t PhraseConditionalUninformativeBase::p0(const vector& vsrc, - const vector& vtrg, - int start_src, int start_trg) const { - const int flen = vsrc.size() - start_src; - const int elen = vtrg.size() - start_trg; - prob_t p; - //p.logeq(log_poisson(elen, flen + 0.01)); // elen | flen ~Pois(flen + 0.01) - p.logeq(log_poisson(elen, 1)); // elen | flen ~Pois(flen + 0.01) - for (int i = 0; i < elen; ++i) - p *= kUNIFORM_TARGET; // draw e_i ~Uniform - return p; -} - -void Model1::LoadModel1(const string& fname) { - cerr << "Loading Model 1 parameters from " << fname << " ..." << endl; - ReadFile rf(fname); - istream& in = *rf.stream(); - string line; - unsigned lc = 0; - while(getline(in, line)) { - ++lc; - int cur = 0; - int start = 0; - while(cur < line.size() && line[cur] != ' ') { ++cur; } - assert(cur != line.size()); - line[cur] = 0; - const WordID src = TD::Convert(&line[0]); - ++cur; - start = cur; - while(cur < line.size() && line[cur] != ' ') { ++cur; } - assert(cur != line.size()); - line[cur] = 0; - WordID trg = TD::Convert(&line[start]); - const double logprob = strtod(&line[cur + 1], NULL); - if (src >= ttable.size()) ttable.resize(src + 1); - ttable[src][trg].logeq(logprob); - } - cerr << " read " << lc << " parameters.\n"; -} - -prob_t PhraseConditionalBase::p0(const vector& vsrc, - const vector& vtrg, - int start_src, int start_trg) const { - const int flen = vsrc.size() - start_src; - const int elen = vtrg.size() - start_trg; - prob_t uniform_src_alignment; uniform_src_alignment.logeq(-log(flen + 1)); - prob_t p; - p.logeq(log_poisson(elen, flen + 0.01)); // elen | flen ~Pois(flen + 0.01) - for (int i = 0; i < elen; ++i) { // for each position i in e-RHS - const WordID trg = vtrg[i + start_trg]; - prob_t tp = prob_t::Zero(); - for (int j = -1; j < flen; ++j) { - const WordID src = j < 0 ? 0 : vsrc[j + start_src]; - tp += kM1MIXTURE * model1(src, trg); - tp += kUNIFORM_MIXTURE * kUNIFORM_TARGET; - } - tp *= uniform_src_alignment; // draw a_i ~uniform - p *= tp; // draw e_i ~Model1(f_a_i) / uniform - } - if (p.is_0()) { - cerr << "Zero! " << vsrc << "\nTRG=" << vtrg << endl; - abort(); - } - return p; -} - -prob_t PhraseJointBase::p0(const vector& vsrc, - const vector& vtrg, - int start_src, int start_trg) const { - const int flen = vsrc.size() - start_src; - const int elen = vtrg.size() - start_trg; - prob_t uniform_src_alignment; uniform_src_alignment.logeq(-log(flen + 1)); - prob_t p; - p.logeq(log_poisson(flen, 1.0)); // flen ~Pois(1) - // elen | flen ~Pois(flen + 0.01) - prob_t ptrglen; ptrglen.logeq(log_poisson(elen, flen + 0.01)); - p *= ptrglen; - p *= kUNIFORM_SOURCE.pow(flen); // each f in F ~Uniform - for (int i = 0; i < elen; ++i) { // for each position i in E - const WordID trg = vtrg[i + start_trg]; - prob_t tp = prob_t::Zero(); - for (int j = -1; j < flen; ++j) { - const WordID src = j < 0 ? 0 : vsrc[j + start_src]; - tp += kM1MIXTURE * model1(src, trg); - tp += kUNIFORM_MIXTURE * kUNIFORM_TARGET; - } - tp *= uniform_src_alignment; // draw a_i ~uniform - p *= tp; // draw e_i ~Model1(f_a_i) / uniform - } - if (p.is_0()) { - cerr << "Zero! " << vsrc << "\nTRG=" << vtrg << endl; - abort(); - } - return p; -} - -prob_t PhraseJointBase_BiDir::p0(const vector& vsrc, - const vector& vtrg, - int start_src, int start_trg) const { - const int flen = vsrc.size() - start_src; - const int elen = vtrg.size() - start_trg; - prob_t uniform_src_alignment; uniform_src_alignment.logeq(-log(flen + 1)); - prob_t uniform_trg_alignment; uniform_trg_alignment.logeq(-log(elen + 1)); - - prob_t p1; - p1.logeq(log_poisson(flen, 1.0)); // flen ~Pois(1) - // elen | flen ~Pois(flen + 0.01) - prob_t ptrglen; ptrglen.logeq(log_poisson(elen, flen + 0.01)); - p1 *= ptrglen; - p1 *= kUNIFORM_SOURCE.pow(flen); // each f in F ~Uniform - for (int i = 0; i < elen; ++i) { // for each position i in E - const WordID trg = vtrg[i + start_trg]; - prob_t tp = prob_t::Zero(); - for (int j = -1; j < flen; ++j) { - const WordID src = j < 0 ? 0 : vsrc[j + start_src]; - tp += kM1MIXTURE * model1(src, trg); - tp += kUNIFORM_MIXTURE * kUNIFORM_TARGET; - } - tp *= uniform_src_alignment; // draw a_i ~uniform - p1 *= tp; // draw e_i ~Model1(f_a_i) / uniform - } - if (p1.is_0()) { - cerr << "Zero! " << vsrc << "\nTRG=" << vtrg << endl; - abort(); - } - - prob_t p2; - p2.logeq(log_poisson(elen, 1.0)); // elen ~Pois(1) - // flen | elen ~Pois(flen + 0.01) - prob_t psrclen; psrclen.logeq(log_poisson(flen, elen + 0.01)); - p2 *= psrclen; - p2 *= kUNIFORM_TARGET.pow(elen); // each f in F ~Uniform - for (int i = 0; i < flen; ++i) { // for each position i in E - const WordID src = vsrc[i + start_src]; - prob_t tp = prob_t::Zero(); - for (int j = -1; j < elen; ++j) { - const WordID trg = j < 0 ? 0 : vtrg[j + start_trg]; - tp += kM1MIXTURE * invmodel1(trg, src); - tp += kUNIFORM_MIXTURE * kUNIFORM_SOURCE; - } - tp *= uniform_trg_alignment; // draw a_i ~uniform - p2 *= tp; // draw e_i ~Model1(f_a_i) / uniform - } - if (p2.is_0()) { - cerr << "Zero! " << vsrc << "\nTRG=" << vtrg << endl; - abort(); - } - - static const prob_t kHALF(0.5); - return (p1 + p2) * kHALF; -} - -JumpBase::JumpBase() : p(200) { - for (unsigned src_len = 1; src_len < 200; ++src_len) { - map& cpd = p[src_len]; - int min_jump = 1 - src_len; - int max_jump = src_len; - prob_t z; - for (int j = min_jump; j <= max_jump; ++j) { - prob_t& cp = cpd[j]; - if (j < 0) - cp.logeq(log_poisson(1.5-j, 1)); - else if (j > 0) - cp.logeq(log_poisson(j, 1)); - cp.poweq(0.2); - z += cp; - } - for (int j = min_jump; j <= max_jump; ++j) { - cpd[j] /= z; - } - } -} - diff --git a/gi/pf/base_measures.h b/gi/pf/base_measures.h deleted file mode 100644 index b0495bfd..00000000 --- a/gi/pf/base_measures.h +++ /dev/null @@ -1,247 +0,0 @@ -#ifndef _BASE_MEASURES_H_ -#define _BASE_MEASURES_H_ - -#include -#include -#include -#include -#include - -#include "unigrams.h" -#include "trule.h" -#include "prob.h" -#include "tdict.h" -#include "sampler.h" - -inline double log_poisson(unsigned x, const double& lambda) { - assert(lambda > 0.0); - return log(lambda) * x - lgamma(x + 1) - lambda; -} - -inline std::ostream& operator<<(std::ostream& os, const std::vector& p) { - os << '['; - for (int i = 0; i < p.size(); ++i) - os << (i==0 ? "" : " ") << TD::Convert(p[i]); - return os << ']'; -} - -struct Model1 { - explicit Model1(const std::string& fname) : - kNULL(TD::Convert("")), - kZERO() { - LoadModel1(fname); - } - - void LoadModel1(const std::string& fname); - - // returns prob 0 if src or trg is not found - const prob_t& operator()(WordID src, WordID trg) const { - if (src == 0) src = kNULL; - if (src < ttable.size()) { - const std::map& cpd = ttable[src]; - const std::map::const_iterator it = cpd.find(trg); - if (it != cpd.end()) - return it->second; - } - return kZERO; - } - - const WordID kNULL; - const prob_t kZERO; - std::vector > ttable; -}; - -struct PoissonUniformUninformativeBase { - explicit PoissonUniformUninformativeBase(const unsigned ves) : kUNIFORM(1.0 / ves) {} - prob_t operator()(const TRule& r) const { - prob_t p; p.logeq(log_poisson(r.e_.size(), 1.0)); - prob_t q = kUNIFORM; q.poweq(r.e_.size()); - p *= q; - return p; - } - void Summary() const {} - void ResampleHyperparameters(MT19937*) {} - void Increment(const TRule&) {} - void Decrement(const TRule&) {} - prob_t Likelihood() const { return prob_t::One(); } - const prob_t kUNIFORM; -}; - -struct CompletelyUniformBase { - explicit CompletelyUniformBase(const unsigned ves) : kUNIFORM(1.0 / ves) {} - prob_t operator()(const TRule&) const { - return kUNIFORM; - } - void Summary() const {} - void ResampleHyperparameters(MT19937*) {} - void Increment(const TRule&) {} - void Decrement(const TRule&) {} - prob_t Likelihood() const { return prob_t::One(); } - const prob_t kUNIFORM; -}; - -struct UnigramWordBase { - explicit UnigramWordBase(const std::string& fname) : un(fname) {} - prob_t operator()(const TRule& r) const { - return un(r.e_); - } - const UnigramWordModel un; -}; - -struct RuleHasher { - size_t operator()(const TRule& r) const { - return hash_value(r); - } -}; - -struct TableLookupBase { - TableLookupBase(const std::string& fname); - - prob_t operator()(const TRule& rule) const { - const std::tr1::unordered_map::const_iterator it = table.find(rule); - if (it == table.end()) { - std::cerr << rule << " not found\n"; - abort(); - } - return it->second; - } - - void ResampleHyperparameters(MT19937*) {} - void Increment(const TRule&) {} - void Decrement(const TRule&) {} - prob_t Likelihood() const { return prob_t::One(); } - void Summary() const {} - - std::tr1::unordered_map table; -}; - -struct PhraseConditionalUninformativeBase { - explicit PhraseConditionalUninformativeBase(const unsigned vocab_e_size) : - kUNIFORM_TARGET(1.0 / vocab_e_size) { - assert(vocab_e_size > 0); - } - - // return p0 of rule.e_ | rule.f_ - prob_t operator()(const TRule& rule) const { - return p0(rule.f_, rule.e_, 0, 0); - } - - prob_t p0(const std::vector& vsrc, const std::vector& vtrg, int start_src, int start_trg) const; - - void Summary() const {} - void ResampleHyperparameters(MT19937*) {} - void Increment(const TRule&) {} - void Decrement(const TRule&) {} - prob_t Likelihood() const { return prob_t::One(); } - const prob_t kUNIFORM_TARGET; -}; - -struct PhraseConditionalUninformativeUnigramBase { - explicit PhraseConditionalUninformativeUnigramBase(const std::string& file, const unsigned vocab_e_size) : u(file, vocab_e_size) {} - - // return p0 of rule.e_ | rule.f_ - prob_t operator()(const TRule& rule) const { - return p0(rule.f_, rule.e_, 0, 0); - } - - prob_t p0(const std::vector& vsrc, const std::vector& vtrg, int start_src, int start_trg) const; - - const UnigramModel u; -}; - -struct PhraseConditionalBase { - explicit PhraseConditionalBase(const Model1& m1, const double m1mixture, const unsigned vocab_e_size) : - model1(m1), - kM1MIXTURE(m1mixture), - kUNIFORM_MIXTURE(1.0 - m1mixture), - kUNIFORM_TARGET(1.0 / vocab_e_size) { - assert(m1mixture >= 0.0 && m1mixture <= 1.0); - assert(vocab_e_size > 0); - } - - // return p0 of rule.e_ | rule.f_ - prob_t operator()(const TRule& rule) const { - return p0(rule.f_, rule.e_, 0, 0); - } - - prob_t p0(const std::vector& vsrc, const std::vector& vtrg, int start_src, int start_trg) const; - - const Model1& model1; - const prob_t kM1MIXTURE; // Model 1 mixture component - const prob_t kUNIFORM_MIXTURE; // uniform mixture component - const prob_t kUNIFORM_TARGET; -}; - -struct PhraseJointBase { - explicit PhraseJointBase(const Model1& m1, const double m1mixture, const unsigned vocab_e_size, const unsigned vocab_f_size) : - model1(m1), - kM1MIXTURE(m1mixture), - kUNIFORM_MIXTURE(1.0 - m1mixture), - kUNIFORM_SOURCE(1.0 / vocab_f_size), - kUNIFORM_TARGET(1.0 / vocab_e_size) { - assert(m1mixture >= 0.0 && m1mixture <= 1.0); - assert(vocab_e_size > 0); - } - - // return p0 of rule.e_ , rule.f_ - prob_t operator()(const TRule& rule) const { - return p0(rule.f_, rule.e_, 0, 0); - } - - prob_t p0(const std::vector& vsrc, const std::vector& vtrg, int start_src, int start_trg) const; - - const Model1& model1; - const prob_t kM1MIXTURE; // Model 1 mixture component - const prob_t kUNIFORM_MIXTURE; // uniform mixture component - const prob_t kUNIFORM_SOURCE; - const prob_t kUNIFORM_TARGET; -}; - -struct PhraseJointBase_BiDir { - explicit PhraseJointBase_BiDir(const Model1& m1, - const Model1& im1, - const double m1mixture, - const unsigned vocab_e_size, - const unsigned vocab_f_size) : - model1(m1), - invmodel1(im1), - kM1MIXTURE(m1mixture), - kUNIFORM_MIXTURE(1.0 - m1mixture), - kUNIFORM_SOURCE(1.0 / vocab_f_size), - kUNIFORM_TARGET(1.0 / vocab_e_size) { - assert(m1mixture >= 0.0 && m1mixture <= 1.0); - assert(vocab_e_size > 0); - } - - // return p0 of rule.e_ , rule.f_ - prob_t operator()(const TRule& rule) const { - return p0(rule.f_, rule.e_, 0, 0); - } - - prob_t p0(const std::vector& vsrc, const std::vector& vtrg, int start_src, int start_trg) const; - - const Model1& model1; - const Model1& invmodel1; - const prob_t kM1MIXTURE; // Model 1 mixture component - const prob_t kUNIFORM_MIXTURE; // uniform mixture component - const prob_t kUNIFORM_SOURCE; - const prob_t kUNIFORM_TARGET; -}; - -// base distribution for jump size multinomials -// basically p(0) = 0 and then, p(1) is max, and then -// you drop as you move to the max jump distance -struct JumpBase { - JumpBase(); - - const prob_t& operator()(int jump, unsigned src_len) const { - assert(jump != 0); - const std::map::const_iterator it = p[src_len].find(jump); - assert(it != p[src_len].end()); - return it->second; - } - std::vector > p; -}; - - -#endif diff --git a/mteval/ns.cc b/mteval/ns.cc index 68c8deaa..da678b84 100644 --- a/mteval/ns.cc +++ b/mteval/ns.cc @@ -136,6 +136,10 @@ struct BleuSegmentEvaluator : public SegmentEvaluator { float* correct, // N elements reserved float* hyp, // N elements reserved bool clip_counts = true) const { + // clear clipping stats + for (typename NGramCountMap::iterator it = ngrams_.begin(); it != ngrams_.end(); ++it) + it->second.second = 0; + vector ngram(N); *correct *= 0; *hyp *= 0; diff --git a/mteval/ns.h b/mteval/ns.h index 622265db..d88c263b 100644 --- a/mteval/ns.h +++ b/mteval/ns.h @@ -6,6 +6,7 @@ #include #include #include "wordid.h" +#include class SufficientStats { public: @@ -43,6 +44,11 @@ class SufficientStats { bool operator==(const SufficientStats& other) const { return other.fields == fields; } + bool IsAdditiveIdentity() const { + for (unsigned i = 0; i < fields.size(); ++i) + if (fields[i]) return false; + return true; + } size_t size() const { return fields.size(); } float operator[](size_t i) const { if (i < fields.size()) return fields[i]; @@ -54,12 +60,12 @@ class SufficientStats { std::vector fields; }; -inline const SufficientStats& operator+(const SufficientStats& a, const SufficientStats& b) { +inline const SufficientStats operator+(const SufficientStats& a, const SufficientStats& b) { SufficientStats res(a); return res += b; } -inline const SufficientStats& operator-(const SufficientStats& a, const SufficientStats& b) { +inline const SufficientStats operator-(const SufficientStats& a, const SufficientStats& b) { SufficientStats res(a); return res -= b; } diff --git a/vest/ces.cc b/vest/ces.cc index 4ae6b695..cd89aa69 100644 --- a/vest/ces.cc +++ b/vest/ces.cc @@ -4,25 +4,32 @@ #include #include -#include "aligner.h" +// TODO, if AER is to be optimized again, we will need this +// #include "aligner.h" #include "lattice.h" #include "viterbi_envelope.h" #include "error_surface.h" +#include "ns.h" using boost::shared_ptr; using namespace std; const bool minimize_segments = true; // if adjacent segments have equal scores, merge them -void ComputeErrorSurface(const SentenceScorer& ss, const ViterbiEnvelope& ve, ErrorSurface* env, const ScoreType type, const Hypergraph& hg) { +void ComputeErrorSurface(const SegmentEvaluator& ss, + const ViterbiEnvelope& ve, + ErrorSurface* env, + const EvaluationMetric* metric, + const Hypergraph& hg) { vector prev_trans; const vector >& ienv = ve.GetSortedSegs(); env->resize(ienv.size()); - ScoreP prev_score; + SufficientStats prev_score; // defaults to 0 int j = 0; for (int i = 0; i < ienv.size(); ++i) { const Segment& seg = *ienv[i]; vector trans; +#if 0 if (type == AER) { vector edges(hg.edges_.size(), false); seg.CollectEdgesUsed(&edges); // get the set of edges in the viterbi @@ -46,34 +53,31 @@ void ComputeErrorSurface(const SentenceScorer& ss, const ViterbiEnvelope& ve, Er string tstr = os.str(); TD::ConvertSentence(tstr.substr(tstr.rfind(" ||| ") + 5), &trans); } else { +#endif seg.ConstructTranslation(&trans); - } - // cerr << "Scoring: " << TD::GetString(trans) << endl; + //} + //cerr << "Scoring: " << TD::GetString(trans) << endl; if (trans == prev_trans) { if (!minimize_segments) { - assert(prev_score); // if this fails, it means - // the decoder can generate null translations ErrorSegment& out = (*env)[j]; - out.delta = prev_score->GetZero(); + out.delta.fields.clear(); out.x = seg.x; ++j; } - // cerr << "Identical translation, skipping scoring\n"; + //cerr << "Identical translation, skipping scoring\n"; } else { - ScoreP score = ss.ScoreCandidate(trans); + SufficientStats score; + ss.Evaluate(trans, &score); // cerr << "score= " << score->ComputeScore() << "\n"; - ScoreP cur_delta_p = score->GetZero(); - Score* cur_delta = cur_delta_p.get(); - // just record the score diffs - if (!prev_score) - prev_score = score->GetZero(); - - score->Subtract(*prev_score, cur_delta); + //string x1; score.Encode(&x1); cerr << "STATS: " << x1 << endl; + const SufficientStats delta = score - prev_score; + //string x2; delta.Encode(&x2); cerr << "DELTA: " << x2 << endl; + //string xx; delta.Encode(&xx); cerr << xx << endl; prev_trans.swap(trans); prev_score = score; - if ((!minimize_segments) || (!cur_delta->IsAdditiveIdentity())) { + if ((!minimize_segments) || (!delta.IsAdditiveIdentity())) { ErrorSegment& out = (*env)[j]; - out.delta = cur_delta_p; + out.delta = delta; out.x = seg.x; ++j; } diff --git a/vest/ces.h b/vest/ces.h index 2f098990..e021e715 100644 --- a/vest/ces.h +++ b/vest/ces.h @@ -1,12 +1,16 @@ #ifndef _CES_H_ #define _CES_H_ -#include "scorer.h" - class ViterbiEnvelope; class Hypergraph; +class SegmentEvaluator; class ErrorSurface; +class EvaluationMetric; -void ComputeErrorSurface(const SentenceScorer& ss, const ViterbiEnvelope& ve, ErrorSurface* es, const ScoreType type, const Hypergraph& hg); +void ComputeErrorSurface(const SegmentEvaluator& ss, + const ViterbiEnvelope& ve, + ErrorSurface* es, + const EvaluationMetric* metric, + const Hypergraph& hg); #endif diff --git a/vest/dist-vest.pl b/vest/dist-vest.pl index c382a972..8cde748b 100755 --- a/vest/dist-vest.pl +++ b/vest/dist-vest.pl @@ -364,7 +364,7 @@ while (1){ $mapoutput =~ s/mapinput/mapoutput/; push @mapoutputs, "$dir/splag.$im1/$mapoutput"; $o2i{"$dir/splag.$im1/$mapoutput"} = "$dir/splag.$im1/$shard"; - my $script = "$MAPPER -s $srcFile -l $metric $refs_comma_sep < $dir/splag.$im1/$shard | sort -t \$'\\t' -k 1 > $dir/splag.$im1/$mapoutput"; + my $script = "$MAPPER -s $srcFile -m $metric $refs_comma_sep < $dir/splag.$im1/$shard | sort -t \$'\\t' -k 1 > $dir/splag.$im1/$mapoutput"; if ($use_make) { my $script_file = "$dir/scripts/map.$shard"; open F, ">$script_file" or die "Can't write $script_file: $!"; @@ -424,7 +424,7 @@ while (1){ print STDERR "Results for $tol/$til lines\n"; print STDERR "\nSORTING AND RUNNING VEST REDUCER\n"; print STDERR unchecked_output("date"); - $cmd="sort -t \$'\\t' -k 1 @mapoutputs | $REDUCER -l $metric > $dir/redoutput.$im1"; + $cmd="sort -t \$'\\t' -k 1 @mapoutputs | $REDUCER -m $metric > $dir/redoutput.$im1"; print STDERR "COMMAND:\n$cmd\n"; check_bash_call($cmd); $cmd="sort -nk3 $DIR_FLAG '-t|' $dir/redoutput.$im1 | head -1"; diff --git a/vest/error_surface.cc b/vest/error_surface.cc index 754aa8de..515b67f8 100644 --- a/vest/error_surface.cc +++ b/vest/error_surface.cc @@ -5,8 +5,7 @@ using namespace std; -ErrorSurface::~ErrorSurface() { -} +ErrorSurface::~ErrorSurface() {} void ErrorSurface::Serialize(std::string* out) const { const int segments = this->size(); @@ -15,8 +14,8 @@ void ErrorSurface::Serialize(std::string* out) const { for (int i = 0; i < segments; ++i) { const ErrorSegment& cur = (*this)[i]; string senc; - cur.delta->Encode(&senc); - assert(senc.size() < 256); + cur.delta.Encode(&senc); + assert(senc.size() < 1024); unsigned char len = senc.size(); os.write((const char*)&cur.x, sizeof(cur.x)); os.write((const char*)&len, sizeof(len)); @@ -25,7 +24,7 @@ void ErrorSurface::Serialize(std::string* out) const { *out = os.str(); } -void ErrorSurface::Deserialize(ScoreType type, const std::string& in) { +void ErrorSurface::Deserialize(const std::string& in) { istringstream is(in, ios::binary); int segments; is.read((char*)&segments, sizeof(segments)); @@ -37,7 +36,7 @@ void ErrorSurface::Deserialize(ScoreType type, const std::string& in) { is.read((char*)&len, sizeof(len)); string senc(len, '\0'); assert(senc.size() == len); is.read((char*)&senc[0], len); - cur.delta = SentenceScorer::CreateScoreFromString(type, senc); + cur.delta = SufficientStats(senc); } } diff --git a/vest/error_surface.h b/vest/error_surface.h index ad728cfa..bb65847b 100644 --- a/vest/error_surface.h +++ b/vest/error_surface.h @@ -4,13 +4,13 @@ #include #include -#include "scorer.h" +#include "ns.h" class Score; struct ErrorSegment { double x; - ScoreP delta; + SufficientStats delta; ErrorSegment() : x(0), delta() {} }; @@ -18,7 +18,7 @@ class ErrorSurface : public std::vector { public: ~ErrorSurface(); void Serialize(std::string* out) const; - void Deserialize(ScoreType type, const std::string& in); + void Deserialize(const std::string& in); }; #endif diff --git a/vest/line_optimizer.cc b/vest/line_optimizer.cc index 7303df8d..49443fbe 100644 --- a/vest/line_optimizer.cc +++ b/vest/line_optimizer.cc @@ -4,7 +4,7 @@ #include #include "sparse_vector.h" -#include "scorer.h" +#include "ns.h" using namespace std; @@ -18,6 +18,7 @@ struct IntervalComp { }; double LineOptimizer::LineOptimize( + const EvaluationMetric* metric, const vector& surfaces, const LineOptimizer::ScoreType type, float* best_score, @@ -32,8 +33,7 @@ double LineOptimizer::LineOptimize( } sort(all_ints.begin(), all_ints.end(), IntervalComp()); double last_boundary = all_ints.front()->x; - ScoreP accp = all_ints.front()->delta->GetZero(); - Score *acc=accp.get(); + SufficientStats acc; float& cur_best_score = *best_score; cur_best_score = (type == MAXIMIZE_SCORE ? -numeric_limits::max() : numeric_limits::max()); @@ -42,9 +42,8 @@ double LineOptimizer::LineOptimize( for (vector::iterator i = all_ints.begin(); i != all_ints.end(); ++i) { const ErrorSegment& seg = **i; - assert(seg.delta); if (seg.x - last_boundary > epsilon) { - float sco = acc->ComputeScore(); + float sco = metric->ComputeScore(acc); if ((type == MAXIMIZE_SCORE && sco > cur_best_score) || (type == MINIMIZE_SCORE && sco < cur_best_score) ) { cur_best_score = sco; @@ -54,16 +53,18 @@ double LineOptimizer::LineOptimize( } else { pos = last_boundary + (seg.x - last_boundary) / 2; } - // cerr << "NEW BEST: " << pos << " (score=" << cur_best_score << ")\n"; + //cerr << "NEW BEST: " << pos << " (score=" << cur_best_score << ")\n"; } - // string xx; acc->ScoreDetails(&xx); cerr << "---- " << xx; + // string xx = metric->DetailedScore(acc); cerr << "---- " << xx; // cerr << "---- s=" << sco << "\n"; last_boundary = seg.x; } // cerr << "x-boundary=" << seg.x << "\n"; - acc->PlusEquals(*seg.delta); + //string x2; acc.Encode(&x2); cerr << " ACC: " << x2 << endl; + //string x1; seg.delta.Encode(&x1); cerr << " DELTA: " << x1 << endl; + acc += seg.delta; } - float sco = acc->ComputeScore(); + float sco = metric->ComputeScore(acc); if ((type == MAXIMIZE_SCORE && sco > cur_best_score) || (type == MINIMIZE_SCORE && sco < cur_best_score) ) { cur_best_score = sco; @@ -107,3 +108,4 @@ void LineOptimizer::CreateOptimizationDirections( RandomUnitVector(features_to_optimize, &out[i], rng); cerr << "Generated " << out.size() << " total axes to optimize along.\n"; } + diff --git a/vest/line_optimizer.h b/vest/line_optimizer.h index 99a591f4..83819f41 100644 --- a/vest/line_optimizer.h +++ b/vest/line_optimizer.h @@ -7,6 +7,7 @@ #include "error_surface.h" #include "sampler.h" +class EvaluationMetric; class Weights; struct LineOptimizer { @@ -18,6 +19,7 @@ struct LineOptimizer { // merge all the error surfaces together into a global // error surface and find (the middle of) the best segment static double LineOptimize( + const EvaluationMetric* metric, const std::vector& envs, const LineOptimizer::ScoreType type, float* best_score, diff --git a/vest/lo_test.cc b/vest/lo_test.cc index f5638600..a67f65e1 100644 --- a/vest/lo_test.cc +++ b/vest/lo_test.cc @@ -5,6 +5,8 @@ #include #include +#include "ns.h" +#include "ns_docscorer.h" #include "ces.h" #include "fdict.h" #include "hg.h" @@ -15,7 +17,6 @@ #include "viterbi.h" #include "viterbi_envelope.h" #include "line_optimizer.h" -#include "scorer.h" using namespace std; using boost::shared_ptr; @@ -141,9 +142,6 @@ TEST_F(OptTest, TestS1) { TD::ConvertSentence(ref22, &refs2[1]); TD::ConvertSentence(ref32, &refs2[2]); TD::ConvertSentence(ref42, &refs2[3]); - ScoreType type = ScoreTypeFromString("ibm_bleu"); - ScorerP scorer1 = SentenceScorer::CreateSentenceScorer(type, refs1); - ScorerP scorer2 = SentenceScorer::CreateSentenceScorer(type, refs2); vector envs(2); RandomNumberGenerator rng; @@ -167,14 +165,17 @@ TEST_F(OptTest, TestS1) { envs[1] = Inside(hg2, NULL, wf); vector es(2); - ComputeErrorSurface(*scorer1, envs[0], &es[0], IBM_BLEU, hg); - ComputeErrorSurface(*scorer2, envs[1], &es[1], IBM_BLEU, hg2); + EvaluationMetric* metric = EvaluationMetric::Instance("IBM_BLEU"); + boost::shared_ptr scorer1 = metric->CreateSegmentEvaluator(refs1); + boost::shared_ptr scorer2 = metric->CreateSegmentEvaluator(refs2); + ComputeErrorSurface(*scorer1, envs[0], &es[0], metric, hg); + ComputeErrorSurface(*scorer2, envs[1], &es[1], metric, hg2); cerr << envs[0].size() << " " << envs[1].size() << endl; cerr << es[0].size() << " " << es[1].size() << endl; envs.clear(); clock_t t_env=clock(); float score; - double m = LineOptimizer::LineOptimize(es, LineOptimizer::MAXIMIZE_SCORE, &score); + double m = LineOptimizer::LineOptimize(metric,es, LineOptimizer::MAXIMIZE_SCORE, &score); clock_t t_opt=clock(); cerr << "line optimizer returned: " << m << " (SCORE=" << score << ")\n"; EXPECT_FLOAT_EQ(0.48719698, score); @@ -217,15 +218,15 @@ TEST_F(OptTest,TestZeroOrigin) { vector envs(1); envs[0] = Inside(hg, NULL, wf); - ScoreType type = ScoreTypeFromString("ibm_bleu"); vector > mr(4); TD::ConvertSentence("untitled", &mr[0]); TD::ConvertSentence("with no title", &mr[1]); TD::ConvertSentence("without a title", &mr[2]); TD::ConvertSentence("without title", &mr[3]); - ScorerP scorer1 = SentenceScorer::CreateSentenceScorer(type, mr); + EvaluationMetric* metric = EvaluationMetric::Instance("IBM_BLEU"); + boost::shared_ptr scorer1 = metric->CreateSegmentEvaluator(mr); vector es(1); - ComputeErrorSurface(*scorer1, envs[0], &es[0], IBM_BLEU, hg); + ComputeErrorSurface(*scorer1, envs[0], &es[0], metric, hg); } int main(int argc, char **argv) { diff --git a/vest/mr_vest_map.cc b/vest/mr_vest_map.cc index 71dda6d7..8f6e085d 100644 --- a/vest/mr_vest_map.cc +++ b/vest/mr_vest_map.cc @@ -6,11 +6,12 @@ #include #include +#include "ns.h" +#include "ns_docscorer.h" #include "ces.h" #include "filelib.h" #include "stringlib.h" #include "sparse_vector.h" -#include "scorer.h" #include "viterbi_envelope.h" #include "inside_outside.h" #include "error_surface.h" @@ -25,7 +26,7 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) { opts.add_options() ("reference,r",po::value >(), "[REQD] Reference translation (tokenized text)") ("source,s",po::value(), "Source file (ignored, except for AER)") - ("loss_function,l",po::value()->default_value("ibm_bleu"), "Loss function being optimized") + ("evaluation_metric,m",po::value()->default_value("ibm_bleu"), "Evaluation metric being optimized") ("input,i",po::value()->default_value("-"), "Input file to map (- is STDIN)") ("help,h", "Help"); po::options_description dcmdline_options; @@ -67,10 +68,10 @@ bool ReadSparseVectorString(const string& s, SparseVector* v) { int main(int argc, char** argv) { po::variables_map conf; InitCommandLine(argc, argv, &conf); - const string loss_function = conf["loss_function"].as(); - ScoreType type = ScoreTypeFromString(loss_function); - DocScorer ds(type, conf["reference"].as >(), conf["source"].as()); - cerr << "Loaded " << ds.size() << " references for scoring with " << loss_function << endl; + const string evaluation_metric = conf["evaluation_metric"].as(); + EvaluationMetric* metric = EvaluationMetric::Instance(evaluation_metric); + DocumentScorer ds(metric, conf["reference"].as >()); + cerr << "Loaded " << ds.size() << " references for scoring with " << evaluation_metric << endl; Hypergraph hg; string last_file; ReadFile in_read(conf["input"].as()); @@ -97,7 +98,8 @@ int main(int argc, char** argv) { ViterbiEnvelopeWeightFunction wf(origin, axis); ViterbiEnvelope ve = Inside(hg, NULL, wf); ErrorSurface es; - ComputeErrorSurface(*ds[sent_id], ve, &es, type, hg); + + ComputeErrorSurface(*ds[sent_id], ve, &es, metric, hg); //cerr << "Viterbi envelope has " << ve.size() << " segments\n"; // cerr << "Error surface has " << es.size() << " segments\n"; string val; diff --git a/vest/mr_vest_reduce.cc b/vest/mr_vest_reduce.cc index 3df52020..dda61f88 100644 --- a/vest/mr_vest_reduce.cc +++ b/vest/mr_vest_reduce.cc @@ -10,6 +10,7 @@ #include "error_surface.h" #include "line_optimizer.h" #include "b64tools.h" +#include "stringlib.h" using namespace std; namespace po = boost::program_options; @@ -17,12 +18,12 @@ namespace po = boost::program_options; void InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() - ("loss_function,l",po::value(), "Loss function being optimized") + ("evaluation_metric,m",po::value(), "Evaluation metric (IBM_BLEU, etc.)") ("help,h", "Help"); po::options_description dcmdline_options; dcmdline_options.add(opts); po::store(parse_command_line(argc, argv, dcmdline_options), *conf); - bool flag = conf->count("loss_function") == 0; + bool flag = conf->count("evaluation_metric") == 0; if (flag || conf->count("help")) { cerr << dcmdline_options << endl; exit(1); @@ -32,30 +33,27 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) { int main(int argc, char** argv) { po::variables_map conf; InitCommandLine(argc, argv, &conf); - const string loss_function = conf["loss_function"].as(); - ScoreType type = ScoreTypeFromString(loss_function); + const string evaluation_metric = conf["evaluation_metric"].as(); LineOptimizer::ScoreType opt_type = LineOptimizer::MAXIMIZE_SCORE; - if (type == TER || type == AER) { + if (UppercaseString(evaluation_metric) == "TER") opt_type = LineOptimizer::MINIMIZE_SCORE; - } - string last_key; + EvaluationMetric* metric = EvaluationMetric::Instance(evaluation_metric); + vector esv; - while(cin) { - string line; - getline(cin, line); - if (line.empty()) continue; + string last_key, line, key, val; + while(getline(cin, line)) { size_t ks = line.find("\t"); assert(string::npos != ks); assert(ks > 2); - string key = line.substr(2, ks - 2); - string val = line.substr(ks + 1); + key = line.substr(2, ks - 2); + val = line.substr(ks + 1); if (key != last_key) { if (!last_key.empty()) { float score; - double x = LineOptimizer::LineOptimize(esv, opt_type, &score); + double x = LineOptimizer::LineOptimize(metric, esv, opt_type, &score); cout << last_key << "|" << x << "|" << score << endl; } - last_key = key; + last_key.swap(key); esv.clear(); } if (val.size() % 4 != 0) { @@ -68,13 +66,11 @@ int main(int argc, char** argv) { continue; } esv.push_back(ErrorSurface()); - esv.back().Deserialize(type, encoded); + esv.back().Deserialize(encoded); } if (!esv.empty()) { - // cerr << "ESV=" << esv.size() << endl; - // for (int i = 0; i < esv.size(); ++i) { cerr << esv[i].size() << endl; } float score; - double x = LineOptimizer::LineOptimize(esv, opt_type, &score); + double x = LineOptimizer::LineOptimize(metric, esv, opt_type, &score); cout << last_key << "|" << x << "|" << score << endl; } return 0; -- cgit v1.2.3 From dbf367e0fc9d3faf906340d1f51f2dbda1892081 Mon Sep 17 00:00:00 2001 From: Chris Dyer Date: Fri, 3 Feb 2012 17:19:16 -0500 Subject: make pro use new interface --- .gitignore | 77 ++++++++++++++++++++++++++++++++++++++++--------- mteval/ns.cc | 4 +++ mteval/ns.h | 4 +++ mteval/ns_ter.h | 1 + pro-train/dist-pro.pl | 4 +-- pro-train/mr_pro_map.cc | 37 +++++++++++++++--------- 6 files changed, 98 insertions(+), 29 deletions(-) (limited to 'mteval/ns.cc') diff --git a/.gitignore b/.gitignore index 5efe37b0..ab8bf2c7 100644 --- a/.gitignore +++ b/.gitignore @@ -1,3 +1,46 @@ +mira/kbest_mira +sa-extract/calignment.c +sa-extract/calignment.so +sa-extract/cdat.c +sa-extract/cdat.so +sa-extract/cfloatlist.c +sa-extract/cfloatlist.so +sa-extract/cintlist.c +sa-extract/cintlist.so +sa-extract/clex.c +sa-extract/clex.so +sa-extract/cn.pyc +sa-extract/context_model.pyc +sa-extract/cstrmap.c +sa-extract/cstrmap.so +sa-extract/csuf.c +sa-extract/csuf.so +sa-extract/cveb.c +sa-extract/cveb.so +sa-extract/lcp.c +sa-extract/lcp.so +sa-extract/log.pyc +sa-extract/manager.pyc +sa-extract/model.pyc +sa-extract/monitor.pyc +sa-extract/precomputation.c +sa-extract/precomputation.so +sa-extract/rule.c +sa-extract/rule.so +sa-extract/rulefactory.c +sa-extract/rulefactory.so +sa-extract/sgml.pyc +sa-extract/sym.c +sa-extract/sym.so +training/mpi_flex_optimize +training/test_ngram +utils/dict_test +utils/logval_test +utils/mfcr_test +utils/phmt +utils/small_vector_test +utils/ts +utils/weights_test pro-train/.deps pro-train/mr_pro_map pro-train/mr_pro_reduce @@ -38,8 +81,8 @@ utils/.deps/ utils/libutils.a *swp *.o -vest/sentserver -vest/sentclient +dpmert/sentserver +dpmert/sentclient gi/pyp-topics/src/contexts_lexer.cc config.guess config.sub @@ -61,12 +104,12 @@ training/mr_em_map_adapter training/mr_reduce_to_weights training/optimize_test training/plftools -vest/fast_score -vest/lo_test -vest/mr_vest_map -vest/mr_vest_reduce -vest/scorer_test -vest/union_forests +dpmert/fast_score +dpmert/lo_test +dpmert/mr_dpmert_map +dpmert/mr_dpmert_reduce +dpmert/scorer_test +dpmert/union_forests Makefile Makefile.in aclocal.m4 @@ -99,11 +142,11 @@ training/Makefile.in training/*.o training/grammar_convert training/model1 -vest/.deps/ -vest/Makefile -vest/Makefile.in -vest/mr_vest_generate_mapper_input -vest/*.o +dpmert/.deps/ +dpmert/Makefile +dpmert/Makefile.in +dpmert/mr_dpmert_generate_mapper_input +dpmert/*.o decoder/logval_test extools/build_lexical_translation extools/filter_grammar @@ -124,7 +167,6 @@ m4/ltoptions.m4 m4/ltsugar.m4 m4/ltversion.m4 m4/lt~obsolete.m4 -vest/mbr_kbest extools/featurize_grammar extools/filter_score_grammar gi/posterior-regularisation/prjava/build/ @@ -143,3 +185,10 @@ gi/posterior-regularisation/prjava/lib/prjava-20100715.jar *.ps *.toc *~ +gi/pf/align-lexonly +gi/pf/align-lexonly-pyp +gi/pf/condnaive +mteval/scorer_test +phrasinator/gibbs_train_plm +phrasinator/gibbs_train_plm_notables +.* diff --git a/mteval/ns.cc b/mteval/ns.cc index da678b84..788f809a 100644 --- a/mteval/ns.cc +++ b/mteval/ns.cc @@ -21,6 +21,10 @@ map EvaluationMetric::instances_; SegmentEvaluator::~SegmentEvaluator() {} EvaluationMetric::~EvaluationMetric() {} +bool EvaluationMetric::IsErrorMetric() const { + return false; +} + struct DefaultSegmentEvaluator : public SegmentEvaluator { DefaultSegmentEvaluator(const vector >& refs, const EvaluationMetric* em) : refs_(refs), em_(em) {} void Evaluate(const vector& hyp, SufficientStats* out) const { diff --git a/mteval/ns.h b/mteval/ns.h index d88c263b..4e4c6975 100644 --- a/mteval/ns.h +++ b/mteval/ns.h @@ -94,6 +94,10 @@ class EvaluationMetric { public: const std::string& MetricId() const { return name_; } + // returns true for metrics like WER and TER where lower scores are better + // false for metrics like BLEU and METEOR where higher scores are better + virtual bool IsErrorMetric() const; + virtual unsigned SufficientStatisticsVectorSize() const; virtual float ComputeScore(const SufficientStats& stats) const = 0; virtual std::string DetailedScore(const SufficientStats& stats) const; diff --git a/mteval/ns_ter.h b/mteval/ns_ter.h index 3190fc1b..c5c25413 100644 --- a/mteval/ns_ter.h +++ b/mteval/ns_ter.h @@ -9,6 +9,7 @@ class TERMetric : public EvaluationMetric { TERMetric() : EvaluationMetric("TER") {} public: + virtual bool IsErrorMetric() const; virtual unsigned SufficientStatisticsVectorSize() const; virtual std::string DetailedScore(const SufficientStats& stats) const; virtual void ComputeSufficientStatistics(const std::vector& hyp, diff --git a/pro-train/dist-pro.pl b/pro-train/dist-pro.pl index ba9cdc06..31258fa6 100755 --- a/pro-train/dist-pro.pl +++ b/pro-train/dist-pro.pl @@ -12,7 +12,7 @@ use POSIX ":sys_wait_h"; my $QSUB_CMD = qsub_args(mert_memory()); my $default_jobs = env_default_jobs(); -my $VEST_DIR="$SCRIPT_DIR/../vest"; +my $VEST_DIR="$SCRIPT_DIR/../dpmert"; require "$VEST_DIR/libcall.pl"; # Default settings @@ -338,7 +338,7 @@ while (1){ $mapoutput =~ s/mapinput/mapoutput/; push @mapoutputs, "$dir/splag.$im1/$mapoutput"; $o2i{"$dir/splag.$im1/$mapoutput"} = "$dir/splag.$im1/$shard"; - my $script = "$MAPPER -s $srcFile -l $metric $refs_comma_sep -w $inweights -K $dir/kbest < $dir/splag.$im1/$shard > $dir/splag.$im1/$mapoutput"; + my $script = "$MAPPER -s $srcFile -m $metric $refs_comma_sep -w $inweights -K $dir/kbest < $dir/splag.$im1/$shard > $dir/splag.$im1/$mapoutput"; if ($use_make) { my $script_file = "$dir/scripts/map.$shard"; open F, ">$script_file" or die "Can't write $script_file: $!"; diff --git a/pro-train/mr_pro_map.cc b/pro-train/mr_pro_map.cc index 0a9b75d7..52b67f32 100644 --- a/pro-train/mr_pro_map.cc +++ b/pro-train/mr_pro_map.cc @@ -13,11 +13,12 @@ #include "filelib.h" #include "stringlib.h" #include "weights.h" -#include "scorer.h" #include "inside_outside.h" #include "hg_io.h" #include "kbest.h" #include "viterbi.h" +#include "ns.h" +#include "ns_docscorer.h" // This is Figure 4 (Algorithm Sampler) from Hopkins&May (2011) @@ -80,7 +81,7 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) { ("kbest_repository,K",po::value()->default_value("./kbest"),"K-best list repository (directory)") ("input,i",po::value()->default_value("-"), "Input file to map (- is STDIN)") ("source,s",po::value()->default_value(""), "Source file (ignored, except for AER)") - ("loss_function,l",po::value()->default_value("ibm_bleu"), "Loss function being optimized") + ("evaluation_metric,m",po::value()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)") ("kbest_size,k",po::value()->default_value(1500u), "Top k-hypotheses to extract") ("candidate_pairs,G", po::value()->default_value(5000u), "Number of pairs to sample per hypothesis (Gamma)") ("best_pairs,X", po::value()->default_value(50u), "Number of pairs, ranked by magnitude of objective delta, to retain (Xi)") @@ -109,9 +110,12 @@ struct HypInfo { HypInfo(const vector& h, const SparseVector& feats) : hyp(h), g_(-100.0f), x(feats) {} // lazy evaluation - double g(const SentenceScorer& scorer) const { - if (g_ == -100.0f) - g_ = scorer.ScoreCandidate(hyp)->ComputeScore(); + double g(const SegmentEvaluator& scorer, const EvaluationMetric* metric) const { + if (g_ == -100.0f) { + SufficientStats ss; + scorer.Evaluate(hyp, &ss); + g_ = metric->ComputeScore(ss); + } return g_; } vector hyp; @@ -233,15 +237,21 @@ struct DiffOrder { } }; -void Sample(const unsigned gamma, const unsigned xi, const vector& J_i, const SentenceScorer& scorer, const bool invert_score, vector* pv) { +void Sample(const unsigned gamma, + const unsigned xi, + const vector& J_i, + const SegmentEvaluator& scorer, + const EvaluationMetric* metric, + vector* pv) { + const bool invert_score = metric->IsErrorMetric(); vector v1, v2; float avg_diff = 0; for (unsigned i = 0; i < gamma; ++i) { const size_t a = rng->inclusive(0, J_i.size() - 1)(); const size_t b = rng->inclusive(0, J_i.size() - 1)(); if (a == b) continue; - float ga = J_i[a].g(scorer); - float gb = J_i[b].g(scorer); + float ga = J_i[a].g(scorer, metric); + float gb = J_i[b].g(scorer, metric); bool positive = gb < ga; if (invert_score) positive = !positive; const float gdiff = fabs(ga - gb); @@ -288,11 +298,12 @@ int main(int argc, char** argv) { rng.reset(new MT19937(conf["random_seed"].as())); else rng.reset(new MT19937); - const string loss_function = conf["loss_function"].as(); + const string evaluation_metric = conf["evaluation_metric"].as(); + + EvaluationMetric* metric = EvaluationMetric::Instance(evaluation_metric); + DocumentScorer ds(metric, conf["reference"].as >()); + cerr << "Loaded " << ds.size() << " references for scoring with " << evaluation_metric << endl; - ScoreType type = ScoreTypeFromString(loss_function); - DocScorer ds(type, conf["reference"].as >(), conf["source"].as()); - cerr << "Loaded " << ds.size() << " references for scoring with " << loss_function << endl; Hypergraph hg; string last_file; ReadFile in_read(conf["input"].as()); @@ -335,7 +346,7 @@ int main(int argc, char** argv) { Dedup(&J_i); WriteKBest(kbest_file, J_i); - Sample(gamma, xi, J_i, *ds[sent_id], (type == TER), &v); + Sample(gamma, xi, J_i, *ds[sent_id], metric, &v); for (unsigned i = 0; i < v.size(); ++i) { const TrainingInstance& vi = v[i]; cout << vi.y << "\t" << vi.x << endl; -- cgit v1.2.3