From e26434979adc33bd949566ba7bf02dff64e80a3e Mon Sep 17 00:00:00 2001 From: Chris Dyer Date: Tue, 2 Oct 2012 00:19:43 -0400 Subject: cdec cleanup, remove bayesian stuff, parsing stuff --- .../linesearch/ArmijoLineSearchMinimization.java | 102 ------- ...joLineSearchMinimizationAlongProjectionArc.java | 141 ---------- .../DifferentiableLineSearchObjective.java | 185 ------------- .../linesearch/GenericPickFirstStep.java | 20 -- .../linesearch/InterpolationPickFirstStep.java | 25 -- .../optimization/linesearch/LineSearchMethod.java | 14 - .../NonNewtonInterpolationPickFirstStep.java | 33 --- ...ProjectedDifferentiableLineSearchObjective.java | 137 ---------- .../linesearch/WolfRuleLineSearch.java | 300 --------------------- .../optimization/linesearch/WolfeConditions.java | 45 ---- 10 files changed, 1002 deletions(-) delete mode 100644 gi/posterior-regularisation/prjava/src/optimization/linesearch/ArmijoLineSearchMinimization.java delete mode 100644 gi/posterior-regularisation/prjava/src/optimization/linesearch/ArmijoLineSearchMinimizationAlongProjectionArc.java delete mode 100644 gi/posterior-regularisation/prjava/src/optimization/linesearch/DifferentiableLineSearchObjective.java delete mode 100644 gi/posterior-regularisation/prjava/src/optimization/linesearch/GenericPickFirstStep.java delete mode 100644 gi/posterior-regularisation/prjava/src/optimization/linesearch/InterpolationPickFirstStep.java delete mode 100644 gi/posterior-regularisation/prjava/src/optimization/linesearch/LineSearchMethod.java delete mode 100644 gi/posterior-regularisation/prjava/src/optimization/linesearch/NonNewtonInterpolationPickFirstStep.java delete mode 100644 gi/posterior-regularisation/prjava/src/optimization/linesearch/ProjectedDifferentiableLineSearchObjective.java delete mode 100644 gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java delete mode 100644 gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfeConditions.java (limited to 'gi/posterior-regularisation/prjava/src/optimization/linesearch') diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/ArmijoLineSearchMinimization.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/ArmijoLineSearchMinimization.java deleted file mode 100644 index c9f9b8df..00000000 --- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/ArmijoLineSearchMinimization.java +++ /dev/null @@ -1,102 +0,0 @@ -package optimization.linesearch; - -import optimization.util.Interpolation; - - -/** - * Implements Back Tracking Line Search as described on page 37 of Numerical Optimization. - * Also known as armijo rule - * @author javg - * - */ -public class ArmijoLineSearchMinimization implements LineSearchMethod{ - - /** - * How much should the step size decrease at each iteration. - */ - double contractionFactor = 0.5; - double c1 = 0.0001; - - double sigma1 = 0.1; - double sigma2 = 0.9; - - - - double initialStep; - int maxIterations = 10; - - - public ArmijoLineSearchMinimization(){ - this.initialStep = 1; - } - - //Experiment - double previousStepPicked = -1;; - double previousInitGradientDot = -1; - double currentInitGradientDot = -1; - - - public void reset(){ - previousStepPicked = -1;; - previousInitGradientDot = -1; - currentInitGradientDot = -1; - } - - public void setInitialStep(double initial){ - initialStep = initial; - } - - /** - * - */ - - public double getStepSize(DifferentiableLineSearchObjective o) { - currentInitGradientDot = o.getInitialGradient(); - //Should update all in the objective - o.updateAlpha(initialStep); - int nrIterations = 0; - //System.out.println("tried alpha" + initialStep + " value " + o.getCurrentValue()); - while(!WolfeConditions.suficientDecrease(o,c1)){ - if(nrIterations >= maxIterations){ - o.printLineSearchSteps(); - return -1; - } - double alpha=o.getAlpha(); - double alphaTemp = - Interpolation.quadraticInterpolation(o.getOriginalValue(), o.getInitialGradient(), alpha, o.getCurrentValue()); - if(alphaTemp >= sigma1 || alphaTemp <= sigma2*o.getAlpha()){ -// System.out.println("using alpha temp " + alphaTemp); - alpha = alphaTemp; - }else{ -// System.out.println("Discarding alpha temp " + alphaTemp); - alpha = alpha*contractionFactor; - } -// double alpha =o.getAlpha()*contractionFactor; - - o.updateAlpha(alpha); - //System.out.println("tried alpha" + alpha+ " value " + o.getCurrentValue()); - nrIterations++; - } - - //System.out.println("Leavning line search used:"); - //o.printLineSearchSteps(); - - previousInitGradientDot = currentInitGradientDot; - previousStepPicked = o.getAlpha(); - return o.getAlpha(); - } - - public double getInitialGradient() { - return currentInitGradientDot; - - } - - public double getPreviousInitialGradient() { - return previousInitGradientDot; - } - - public double getPreviousStepUsed() { - return previousStepPicked; - } - -} diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/ArmijoLineSearchMinimizationAlongProjectionArc.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/ArmijoLineSearchMinimizationAlongProjectionArc.java deleted file mode 100644 index e153f2da..00000000 --- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/ArmijoLineSearchMinimizationAlongProjectionArc.java +++ /dev/null @@ -1,141 +0,0 @@ -package optimization.linesearch; - -import optimization.gradientBasedMethods.ProjectedObjective; -import optimization.util.Interpolation; -import optimization.util.MathUtils; - - - - - -/** - * Implements Armijo Rule Line search along the projection arc (Non-Linear Programming page 230) - * To be used with Projected gradient Methods. - * - * Recall that armijo tries successive step sizes alpha until the sufficient decrease is satisfied: - * f(x+alpha*direction) < f(x) + alpha*c1*grad(f)*direction - * - * In this case we are optimizing over a convex set X so we must guarantee that the new point stays inside the - * constraints. - * First the direction as to be feasible (inside constraints) and will be define as: - * d = (x_k_f - x_k) where x_k_f is a feasible point. - * so the armijo condition can be rewritten as: - * f(x+alpha(x_k_f - x_k)) < f(x) + c1*grad(f)*(x_k_f - x_k) - * and x_k_f is defined as: - * [x_k-alpha*grad(f)]+ - * where []+ mean a projection to the feasibility set. - * So this means that we take a step on the negative gradient (gradient descent) and then obtain then project - * that point to the feasibility set. - * Note that if the point is already feasible then we are back to the normal armijo rule. - * - * @author javg - * - */ -public class ArmijoLineSearchMinimizationAlongProjectionArc implements LineSearchMethod{ - - /** - * How much should the step size decrease at each iteration. - */ - double contractionFactor = 0.5; - double c1 = 0.0001; - - - double initialStep; - int maxIterations = 100; - - - double sigma1 = 0.1; - double sigma2 = 0.9; - - //Experiment - double previousStepPicked = -1;; - double previousInitGradientDot = -1; - double currentInitGradientDot = -1; - - GenericPickFirstStep strategy; - - - public void reset(){ - previousStepPicked = -1;; - previousInitGradientDot = -1; - currentInitGradientDot = -1; - } - - - public ArmijoLineSearchMinimizationAlongProjectionArc(){ - this.initialStep = 1; - } - - public ArmijoLineSearchMinimizationAlongProjectionArc(GenericPickFirstStep strategy){ - this.strategy = strategy; - this.initialStep = strategy.getFirstStep(this); - } - - - public void setInitialStep(double initial){ - this.initialStep = initial; - } - - /** - * - */ - - public double getStepSize(DifferentiableLineSearchObjective o) { - - - //Should update all in the objective - initialStep = strategy.getFirstStep(this); - o.updateAlpha(initialStep); - previousInitGradientDot=currentInitGradientDot; - currentInitGradientDot=o.getCurrentGradient(); - int nrIterations = 0; - - //Armijo rule, the current value has to be smaller than the original value plus a small step of the gradient - while(o.getCurrentValue() > - o.getOriginalValue() + c1*(o.getCurrentGradient())){ -// System.out.println("curr value "+o.getCurrentValue()); -// System.out.println("original value "+o.getOriginalValue()); -// System.out.println("GRADIENT decrease" +(MathUtils.dotProduct(o.o.gradient, -// MathUtils.arrayMinus(o.originalParameters,((ProjectedObjective)o.o).auxParameters)))); -// System.out.println("GRADIENT SAVED" + o.getCurrentGradient()); - if(nrIterations >= maxIterations){ - System.out.println("Could not find a step leaving line search with -1"); - o.printLineSearchSteps(); - return -1; - } - double alpha=o.getAlpha(); - double alphaTemp = - Interpolation.quadraticInterpolation(o.getOriginalValue(), o.getInitialGradient(), alpha, o.getCurrentValue()); - if(alphaTemp >= sigma1 || alphaTemp <= sigma2*o.getAlpha()){ - alpha = alphaTemp; - }else{ - alpha = alpha*contractionFactor; - } -// double alpha =obj.getAlpha()*contractionFactor; - o.updateAlpha(alpha); - nrIterations++; - } -// System.out.println("curr value "+o.getCurrentValue()); -// System.out.println("original value "+o.getOriginalValue()); -// System.out.println("sufficient decrease" +c1*o.getCurrentGradient()); -// System.out.println("Leavning line search used:"); -// o.printSmallLineSearchSteps(); - - previousStepPicked = o.getAlpha(); - return o.getAlpha(); - } - - public double getInitialGradient() { - return currentInitGradientDot; - - } - - public double getPreviousInitialGradient() { - return previousInitGradientDot; - } - - public double getPreviousStepUsed() { - return previousStepPicked; - } - -} diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/DifferentiableLineSearchObjective.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/DifferentiableLineSearchObjective.java deleted file mode 100644 index a5bc958e..00000000 --- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/DifferentiableLineSearchObjective.java +++ /dev/null @@ -1,185 +0,0 @@ -package optimization.linesearch; - -import gnu.trove.TDoubleArrayList; -import gnu.trove.TIntArrayList; - -import java.util.ArrayList; -import java.util.Arrays; -import java.util.Collections; -import java.util.Comparator; - -import optimization.gradientBasedMethods.Objective; -import optimization.util.MathUtils; -import optimization.util.StaticTools; - - - -import util.MathUtil; -import util.Printing; - - -/** - * A wrapper class for the actual objective in order to perform - * line search. The optimization code assumes that this does a lot - * of caching in order to simplify legibility. For the applications - * we use it for, caching the entire history of evaluations should be - * a win. - * - * Note: the lastEvaluatedAt value is very important, since we will use - * it to avoid doing an evaluation of the gradient after the line search. - * - * The differentiable line search objective defines a search along the ray - * given by a direction of the main objective. - * It defines the following function, - * where f is the original objective function: - * g(alpha) = f(x_0 + alpha*direction) - * g'(alpha) = f'(x_0 + alpha*direction)*direction - * - * @author joao - * - */ -public class DifferentiableLineSearchObjective { - - - - Objective o; - int nrIterations; - TDoubleArrayList steps; - TDoubleArrayList values; - TDoubleArrayList gradients; - - //This variables cannot change - public double[] originalParameters; - public double[] searchDirection; - - - /** - * Defines a line search objective: - * Receives: - * Objective to each we are performing the line search, is used to calculate values and gradients - * Direction where to do the ray search, note that the direction does not depend of the - * objective but depends from the method. - * @param o - * @param direction - */ - public DifferentiableLineSearchObjective(Objective o) { - this.o = o; - originalParameters = new double[o.getNumParameters()]; - searchDirection = new double[o.getNumParameters()]; - steps = new TDoubleArrayList(); - values = new TDoubleArrayList(); - gradients = new TDoubleArrayList(); - } - /** - * Called whenever we start a new iteration. - * Receives the ray where we are searching for and resets all values - * - */ - public void reset(double[] direction){ - //Copy initial values - System.arraycopy(o.getParameters(), 0, originalParameters, 0, o.getNumParameters()); - System.arraycopy(direction, 0, searchDirection, 0, o.getNumParameters()); - - //Initialize variables - nrIterations = 0; - steps.clear(); - values.clear(); - gradients.clear(); - - values.add(o.getValue()); - gradients.add(MathUtils.dotProduct(o.getGradient(),direction)); - steps.add(0); - } - - - /** - * update the current value of alpha. - * Takes a step with that alpha in direction - * Get the real objective value and gradient and calculate all required information. - */ - public void updateAlpha(double alpha){ - if(alpha < 0){ - System.out.println("alpha may not be smaller that zero"); - throw new RuntimeException(); - } - nrIterations++; - steps.add(alpha); - //x_t+1 = x_t + alpha*direction - System.arraycopy(originalParameters,0, o.getParameters(), 0, originalParameters.length); - MathUtils.plusEquals(o.getParameters(), searchDirection, alpha); - o.setParameters(o.getParameters()); -// System.out.println("Took a step of " + alpha + " new value " + o.getValue()); - values.add(o.getValue()); - gradients.add(MathUtils.dotProduct(o.getGradient(),searchDirection)); - } - - - - public int getNrIterations(){ - return nrIterations; - } - - /** - * return g(alpha) for the current value of alpha - * @param iter - * @return - */ - public double getValue(int iter){ - return values.get(iter); - } - - public double getCurrentValue(){ - return values.get(nrIterations); - } - - public double getOriginalValue(){ - return values.get(0); - } - - /** - * return g'(alpha) for the current value of alpha - * @param iter - * @return - */ - public double getGradient(int iter){ - return gradients.get(iter); - } - - public double getCurrentGradient(){ - return gradients.get(nrIterations); - } - - public double getInitialGradient(){ - return gradients.get(0); - } - - - - - public double getAlpha(){ - return steps.get(nrIterations); - } - - public void printLineSearchSteps(){ - System.out.println( - " Steps size "+steps.size() + - "Values size "+values.size() + - "Gradeients size "+gradients.size()); - for(int i =0; i < steps.size();i++){ - System.out.println("Iter " + i + " step " + steps.get(i) + - " value " + values.get(i) + " grad " + gradients.get(i)); - } - } - - public void printSmallLineSearchSteps(){ - for(int i =0; i < steps.size();i++){ - System.out.print(StaticTools.prettyPrint(steps.get(i), "0.0000E00",8) + " "); - } - System.out.println(); - } - - public static void main(String[] args) { - - } - -} diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/GenericPickFirstStep.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/GenericPickFirstStep.java deleted file mode 100644 index a33eb311..00000000 --- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/GenericPickFirstStep.java +++ /dev/null @@ -1,20 +0,0 @@ -package optimization.linesearch; - - -public class GenericPickFirstStep{ - double _initValue; - public GenericPickFirstStep(double initValue) { - _initValue = initValue; - } - - public double getFirstStep(LineSearchMethod ls){ - return _initValue; - } - public void collectInitValues(LineSearchMethod ls){ - - } - - public void collectFinalValues(LineSearchMethod ls){ - - } -} diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/InterpolationPickFirstStep.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/InterpolationPickFirstStep.java deleted file mode 100644 index 0deebcdb..00000000 --- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/InterpolationPickFirstStep.java +++ /dev/null @@ -1,25 +0,0 @@ -package optimization.linesearch; - - -public class InterpolationPickFirstStep extends GenericPickFirstStep{ - public InterpolationPickFirstStep(double initValue) { - super(initValue); - } - - public double getFirstStep(LineSearchMethod ls){ - if(ls.getPreviousStepUsed() != -1 && ls.getPreviousInitialGradient()!=0){ - double newStep = Math.min(300, 1.02*ls.getPreviousInitialGradient()*ls.getPreviousStepUsed()/ls.getInitialGradient()); - // System.out.println("proposing " + newStep); - return newStep; - - } - return _initValue; - } - public void collectInitValues(WolfRuleLineSearch ls){ - - } - - public void collectFinalValues(WolfRuleLineSearch ls){ - - } -} diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/LineSearchMethod.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/LineSearchMethod.java deleted file mode 100644 index 80cd7f39..00000000 --- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/LineSearchMethod.java +++ /dev/null @@ -1,14 +0,0 @@ -package optimization.linesearch; - - -public interface LineSearchMethod { - - double getStepSize(DifferentiableLineSearchObjective o); - - public double getInitialGradient(); - public double getPreviousInitialGradient(); - public double getPreviousStepUsed(); - - public void setInitialStep(double initial); - public void reset(); -} diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/NonNewtonInterpolationPickFirstStep.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/NonNewtonInterpolationPickFirstStep.java deleted file mode 100644 index 4b354fd9..00000000 --- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/NonNewtonInterpolationPickFirstStep.java +++ /dev/null @@ -1,33 +0,0 @@ -package optimization.linesearch; - -/** - * Non newtwon since we don't always try 1... - * Not sure if that is even usefull for newton - * @author javg - * - */ -public class NonNewtonInterpolationPickFirstStep extends GenericPickFirstStep{ - public NonNewtonInterpolationPickFirstStep(double initValue) { - super(initValue); - } - - public double getFirstStep(LineSearchMethod ls){ -// System.out.println("Previous step used " + ls.getPreviousStepUsed()); -// System.out.println("PreviousGradinebt " + ls.getPreviousInitialGradient()); -// System.out.println("CurrentGradinebt " + ls.getInitialGradient()); - if(ls.getPreviousStepUsed() != -1 && ls.getPreviousInitialGradient()!=0){ - double newStep = 1.01*ls.getPreviousInitialGradient()*ls.getPreviousStepUsed()/ls.getInitialGradient(); - //System.out.println("Suggesting " + newStep); - return newStep; - - } - return _initValue; - } - public void collectInitValues(WolfRuleLineSearch ls){ - - } - - public void collectFinalValues(WolfRuleLineSearch ls){ - - } -} diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/ProjectedDifferentiableLineSearchObjective.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/ProjectedDifferentiableLineSearchObjective.java deleted file mode 100644 index 29ccbc32..00000000 --- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/ProjectedDifferentiableLineSearchObjective.java +++ /dev/null @@ -1,137 +0,0 @@ -package optimization.linesearch; - -import optimization.gradientBasedMethods.Objective; -import optimization.gradientBasedMethods.ProjectedObjective; -import optimization.util.MathUtils; -import optimization.util.MatrixOutput; - - -/** - * See ArmijoLineSearchMinimizationAlongProjectionArc for description - * @author javg - * - */ -public class ProjectedDifferentiableLineSearchObjective extends DifferentiableLineSearchObjective{ - - - - ProjectedObjective obj; - public ProjectedDifferentiableLineSearchObjective(Objective o) { - super(o); - if(!(o instanceof ProjectedObjective)){ - System.out.println("Must receive a projected objective"); - throw new RuntimeException(); - } - obj = (ProjectedObjective) o; - } - - - - public double[] projectPoint (double[] point){ - return ((ProjectedObjective)o).projectPoint(point); - } - public void updateAlpha(double alpha){ - if(alpha < 0){ - System.out.println("alpha may not be smaller that zero"); - throw new RuntimeException(); - } - - if(obj.auxParameters == null){ - obj.auxParameters = new double[obj.getParameters().length]; - } - - nrIterations++; - - steps.add(alpha); - System.arraycopy(originalParameters, 0, obj.auxParameters, 0, obj.auxParameters.length); - - //Take a step into the search direction - -// MatrixOutput.printDoubleArray(obj.getGradient(), "gradient"); - -// alpha=gradients.get(0)*alpha/(gradients.get(gradients.size()-1)); - - //x_t+1 = x_t - alpha*gradient = x_t + alpha*direction - MathUtils.plusEquals(obj.auxParameters, searchDirection, alpha); -// MatrixOutput.printDoubleArray(obj.auxParameters, "before projection"); - obj.auxParameters = projectPoint(obj.auxParameters); -// MatrixOutput.printDoubleArray(obj.auxParameters, "after projection"); - o.setParameters(obj.auxParameters); -// System.out.println("new parameters"); -// o.printParameters(); - values.add(o.getValue()); - //Computes the new gradient x_k-[x_k-alpha*Gradient(x_k)]+ - MathUtils.minusEqualsInverse(originalParameters,obj.auxParameters,1); -// MatrixOutput.printDoubleArray(obj.auxParameters, "new gradient"); - //Dot product between the new direction and the new gradient - double gradient = MathUtils.dotProduct(obj.auxParameters,searchDirection); - gradients.add(gradient); - if(gradient > 0){ - System.out.println("Gradient on line search has to be smaller than zero"); - System.out.println("Iter: " + nrIterations); - MatrixOutput.printDoubleArray(obj.auxParameters, "new direction"); - MatrixOutput.printDoubleArray(searchDirection, "search direction"); - throw new RuntimeException(); - - } - - } - - /** - * - */ -// public void updateAlpha(double alpha){ -// -// if(alpha < 0){ -// System.out.println("alpha may not be smaller that zero"); -// throw new RuntimeException(); -// } -// -// nrIterations++; -// steps.add(alpha); -// //x_t+1 = x_t - alpha*direction -// System.arraycopy(originalParameters, 0, parametersChange, 0, parametersChange.length); -//// MatrixOutput.printDoubleArray(parametersChange, "parameters before step"); -//// System.out.println("Step" + alpha); -// MatrixOutput.printDoubleArray(originalGradient, "gradient + " + alpha); -// -// MathUtils.minusEquals(parametersChange, originalGradient, alpha); -// -// //Project the points into the feasibility set -//// MatrixOutput.printDoubleArray(parametersChange, "before projection"); -// //x_k(alpha) = [x_k - alpha*grad f(x_k)]+ -// parametersChange = projectPoint(parametersChange); -//// MatrixOutput.printDoubleArray(parametersChange, "after projection"); -// o.setParameters(parametersChange); -// values.add(o.getValue()); -// //Computes the new direction x_k-[x_k-alpha*Gradient(x_k)]+ -// -// direction=MathUtils.arrayMinus(parametersChange,originalParameters); -//// MatrixOutput.printDoubleArray(direction, "new direction"); -// -// double gradient = MathUtils.dotProduct(originalGradient,direction); -// gradients.add(gradient); -// if(gradient > 1E-10){ -// System.out.println("cosine " + gradient/(MathUtils.L2Norm(originalGradient)*MathUtils.L2Norm(direction))); -// -// -// System.out.println("not a descent direction for alpha " + alpha); -// System.arraycopy(originalParameters, 0, parametersChange, 0, parametersChange.length); -// MathUtils.minusEquals(parametersChange, originalGradient, 1E-20); -// -// parametersChange = projectPoint(parametersChange); -// direction=MathUtils.arrayMinus(parametersChange,originalParameters); -// gradient = MathUtils.dotProduct(originalGradient,direction); -// if(gradient > 0){ -// System.out.println("Direction is really non-descent evern for small alphas:" + gradient); -// } -// System.out.println("ProjecteLineSearchObjective: Should be a descent direction at " + nrIterations + ": "+ gradient); -//// System.out.println(Printing.doubleArrayToString(originalGradient, null,"Original gradient")); -//// System.out.println(Printing.doubleArrayToString(originalParameters, null,"Original parameters")); -//// System.out.println(Printing.doubleArrayToString(parametersChange, null,"Projected parameters")); -//// System.out.println(Printing.doubleArrayToString(direction, null,"Direction")); -// throw new RuntimeException(); -// } -// } - -} diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java deleted file mode 100644 index 5489f2d0..00000000 --- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java +++ /dev/null @@ -1,300 +0,0 @@ -package optimization.linesearch; - -import java.io.PrintStream; -import java.util.ArrayList; - -import optimization.util.Interpolation; - - - - -/** - * - * @author javg - * - */ -public class WolfRuleLineSearch implements LineSearchMethod{ - - GenericPickFirstStep pickFirstStep; - - double c1 = 1.0E-4; - double c2 = 0.9; - - //Application dependent - double maxStep=100; - - int extrapolationIteration; - int maxExtrapolationIteration = 1000; - - - double minZoomDiffTresh = 10E-10; - - - ArrayList steps; - ArrayList gradientDots; - ArrayList functionVals; - - int debugLevel = 0; - boolean foudStep = false; - - public WolfRuleLineSearch(GenericPickFirstStep pickFirstStep){ - this.pickFirstStep = pickFirstStep; - - } - - - - - public WolfRuleLineSearch(GenericPickFirstStep pickFirstStep, double c1, double c2){ - this.pickFirstStep = pickFirstStep; - initialStep = pickFirstStep.getFirstStep(this); - this.c1 = c1; - this.c2 = c2; - } - - public void setDebugLevel(int level){ - debugLevel = level; - } - - //Experiment - double previousStepPicked = -1;; - double previousInitGradientDot = -1; - double currentInitGradientDot = -1; - - double initialStep; - - - public void reset(){ - previousStepPicked = -1;; - previousInitGradientDot = -1; - currentInitGradientDot = -1; - if(steps != null) - steps.clear(); - if(gradientDots != null) - gradientDots.clear(); - if(functionVals != null) - functionVals.clear(); - } - - public void setInitialStep(double initial){ - initialStep = pickFirstStep.getFirstStep(this); - } - - - - /** - * Implements Wolf Line search as described in nocetal. - * This process consists in two stages. The first stage we try to satisfy the - * biggest step size that still satisfies the curvature condition. We keep increasing - * the initial step size until we find a step satisfying the curvature condition, we return - * success, we failed the sufficient increase so we cannot increase more and we can call zoom with - * that maximum step, or we pass the minimum in which case we can call zoom the same way. - * - */ - public double getStepSize(DifferentiableLineSearchObjective objective){ - //System.out.println("entering line search"); - - foudStep = false; - if(debugLevel >= 1){ - steps = new ArrayList(); - gradientDots = new ArrayList(); - functionVals =new ArrayList(); - } - - //test - currentInitGradientDot = objective.getInitialGradient(); - - - double previousValue = objective.getCurrentValue(); - double previousStep = 0; - double currentStep =pickFirstStep.getFirstStep(this); - for(extrapolationIteration = 0; - extrapolationIteration < maxExtrapolationIteration; extrapolationIteration++){ - - objective.updateAlpha(currentStep); - double currentValue = objective.getCurrentValue(); - if(debugLevel >= 1){ - steps.add(currentStep); - functionVals.add(currentValue); - gradientDots.add(objective.getCurrentGradient()); - } - - - //The current step does not satisfy the sufficient decrease condition anymore - // so we cannot get bigger than that calling zoom. - if(!WolfeConditions.suficientDecrease(objective,c1)|| - (extrapolationIteration > 0 && currentValue >= previousValue)){ - currentStep = zoom(objective,previousStep,currentStep,objective.nrIterations-1,objective.nrIterations); - break; - } - - //Satisfying both conditions ready to leave - if(WolfeConditions.sufficientCurvature(objective,c1,c2)){ - //Found step - foudStep = true; - break; - } - - /** - * This means that we passed the minimum already since the dot product that should be - * negative (descent direction) is now positive. So we cannot increase more. On the other hand - * since we know the direction is a descent direction the value the objective at the current step - * is for sure smaller than the preivous step so we change the order. - */ - if(objective.getCurrentGradient() >= 0){ - currentStep = zoom(objective,currentStep,previousStep,objective.nrIterations,objective.nrIterations-1); - break; - } - - - //Ok, so we can still get a bigger step, - double aux = currentStep; - //currentStep = currentStep*2; - if(Math.abs(currentStep-maxStep)>1.1e-2){ - currentStep = (currentStep+maxStep)/2; - }else{ - currentStep = currentStep*2; - } - previousStep = aux; - previousValue = currentValue; - //Could be done better - if(currentStep >= maxStep){ - System.out.println("Excedded max step...calling zoom with maxStepSize"); - currentStep = zoom(objective,previousStep,currentStep,objective.nrIterations-1,objective.nrIterations); - } - } - if(!foudStep){ - System.out.println("Wolfe Rule exceed number of iterations"); - if(debugLevel >= 1){ - printSmallWolfeStats(System.out); -// System.out.println("Line search values"); -// DebugHelpers.getLineSearchGraph(o, direction, originalParameters,origValue, origGradDirectionDot,c1,c2); - } - return -1; - } - if(debugLevel >= 1){ - printSmallWolfeStats(System.out); - } - - previousStepPicked = currentStep; - previousInitGradientDot = currentInitGradientDot; -// objective.printLineSearchSteps(); - return currentStep; - } - - - - - - public void printWolfeStats(PrintStream out){ - for(int i = 0; i < steps.size(); i++){ - out.println("Step " + steps.get(i) + " value " + functionVals.get(i) + " dot " + gradientDots.get(i)); - } - } - - public void printSmallWolfeStats(PrintStream out){ - for(int i = 0; i < steps.size(); i++){ - out.print(steps.get(i) + ":"+functionVals.get(i)+":"+gradientDots.get(i)+" "); - } - System.out.println(); - } - - - - /** - * Pick a step satisfying the strong wolfe condition from an given from lowerStep and higherStep - * picked on the routine above. - * - * Both lowerStep and higherStep have been evaluated, so we only need to pass the iteration where they have - * been evaluated and save extra evaluations. - * - * We know that lowerStepValue as to be smaller than higherStepValue, and that a point - * satisfying both conditions exists in such interval. - * - * LowerStep always satisfies at least the sufficient decrease - * @return - */ - public double zoom(DifferentiableLineSearchObjective o, double lowerStep, double higherStep, - int lowerStepIter, int higherStepIter){ - - if(debugLevel >=2){ - System.out.println("Entering zoom with " + lowerStep+"-"+higherStep); - } - - double currentStep=-1; - - int zoomIter = 0; - while(zoomIter < 1000){ - if(Math.abs(lowerStep-higherStep) < minZoomDiffTresh){ - o.updateAlpha(lowerStep); - if(debugLevel >= 1){ - steps.add(lowerStep); - functionVals.add(o.getCurrentValue()); - gradientDots.add(o.getCurrentGradient()); - } - foudStep = true; - return lowerStep; - } - - //Cubic interpolation - currentStep = - Interpolation.cubicInterpolation(lowerStep, o.getValue(lowerStepIter), o.getGradient(lowerStepIter), - higherStep, o.getValue(higherStepIter), o.getGradient(higherStepIter)); - - //Safeguard.... should not be required check in what condtions it is required - if(currentStep < 0 ){ - currentStep = (lowerStep+higherStep)/2; - } - if(Double.isNaN(currentStep) || Double.isInfinite(currentStep)){ - currentStep = (lowerStep+higherStep)/2; - } -// currentStep = (lowerStep+higherStep)/2; -// System.out.println("Trying "+currentStep); - o.updateAlpha(currentStep); - if(debugLevel >=1){ - steps.add(currentStep); - functionVals.add(o.getCurrentValue()); - gradientDots.add(o.getCurrentGradient()); - } - if(!WolfeConditions.suficientDecrease(o,c1) - || o.getCurrentValue() >= o.getValue(lowerStepIter)){ - higherStepIter = o.nrIterations; - higherStep = currentStep; - } - //Note when entering here the new step satisfies the sufficent decrease and - // or as a function value that is better than the previous best (lowerStepFunctionValues) - // so we either leave or change the value of the alpha low. - else{ - if(WolfeConditions.sufficientCurvature(o,c1,c2)){ - //Satisfies the both wolf conditions - foudStep = true; - break; - } - //If does not satisfy curvature - if(o.getCurrentGradient()*(higherStep-lowerStep) >= 0){ - higherStep = lowerStep; - higherStepIter = lowerStepIter; - } - lowerStep = currentStep; - lowerStepIter = o.nrIterations; - } - zoomIter++; - } - return currentStep; - } - - public double getInitialGradient() { - return currentInitGradientDot; - - } - - public double getPreviousInitialGradient() { - return previousInitGradientDot; - } - - public double getPreviousStepUsed() { - return previousStepPicked; - } - - -} diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfeConditions.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfeConditions.java deleted file mode 100644 index dcc704eb..00000000 --- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfeConditions.java +++ /dev/null @@ -1,45 +0,0 @@ -package optimization.linesearch; - - -public class WolfeConditions { - - /** - * Sufficient Increase number. Default constant - */ - - - /** - * Value for suficient curvature: - * 0.9 - For newton and quase netwon methods - * 0.1 - Non linear conhugate gradient - */ - - int debugLevel = 0; - public void setDebugLevel(int level){ - debugLevel = level; - } - - public static boolean suficientDecrease(DifferentiableLineSearchObjective o, double c1){ - double value = o.getOriginalValue()+c1*o.getAlpha()*o.getInitialGradient(); -// System.out.println("Sufficient Decrease original "+value+" new "+ o.getCurrentValue()); - return o.getCurrentValue() <= value; - } - - - - - public static boolean sufficientCurvature(DifferentiableLineSearchObjective o, double c1, double c2){ -// if(debugLevel >= 2){ -// double current = Math.abs(o.getCurrentGradient()); -// double orig = -c2*o.getInitialGradient(); -// if(current <= orig){ -// return true; -// }else{ -// System.out.println("Not satistfying curvature condition curvature " + current + " wants " + orig); -// return false; -// } -// } - return Math.abs(o.getCurrentGradient()) <= -c2*o.getInitialGradient(); - } - -} -- cgit v1.2.3